
Nomenclature
SCRIPT: multiple commands
COMMAND: a series (one line) of words
WORD: a text string separated by a space: value, operator, variable, pre
VALUE: a number
OPERATOR: a function, may need value(s) as argument(s), may return value
VARIABLE: named memory storage
PRE: condition/rule that applies to rest of the command: del, prob, if, s

Parameters
Parameters are like variables, but tied to functionality of the software or hardware. CV & TR are arrays
and require an index argument. IN and PARAM provide CV and physical input into a script. Their state
can be read with the listed parameters. Reading and writing is similar to variables-- assignment
happens when the parameter is leftmost in the command (and requires an additional argument: the
value to take).

 TR A-D set TR value (0-1)
 TR.TIME A-D time for TR.PULSE

 CV 1-4 CV target value
 CV.SLEW 1-4 CV slew time in ms (how long to reach the target)
 CV.SET 1-4 set CV value directly, ignoring slew time
 CV.OFF 1-4 CV o�set (added to CV value at �nal stage)

 IN get value of IN jack (0-16383)
 PARAM get value of PARAM knob (0-16383)

 M metro time (ms). M script executes at this interval
 M.ACT [0/1] enable/disable metro
 M.RESET hard reset metro count without triggering

 TIME timer value. counts up in ms.
 TIME.ACT [0/1] enable/disable timer counting

 SCENE read/recall scene

Variables

 X, Y, Z general purpose
 T typically used for time values, but also general
 A-D assigned 1-4 by default (for TR labeling), reassignable

Special variables

 I overwritten by the L (loop) PRE, but can be general.
 O auto-increments on each read.
 DRUNK changes by -1, 0, or 1 upon each read, saving state.
 Q implements a queue or shift register.

 Q.N sets the read position.
 Q.AVG will return the average of the entire queue

 NB: Set Q.AVG to set the entire queue to the speci�ed value.

Data and Tables
Working range is signed 16 bit: -32768 to 32767
Built-in constant tables for easy note and voltage conversion:

 N 0-127 equal temp semi (negatives accepted as well)
 V 0-10 volt lookup (0V to 10V)
 VV 0-1000 volt lookup with decimal precision (0.00V to 10.00V)

Operators
Operators take a variable number of parameters (including none) and typically return one value.

 RAND a generate random number 0-(a)
 RRAND a b generate random number from (a) to (b)
 TOSS return random: 0 or 1
 AVG a b return average of two arguments (a) and (b)
 MIN/MAX a b choose lesser/greater of two inputs (a) and (b)
 ADD/SUB/MUL a b arithmetic
 DIV/MOD a b arithmetic
 EQ/NE/GT/LT a b logic: equals, not equals, greater than, less than
 EZ/NZ a logic: equals zero, not zero
 RSH/LSH a b shift (a) by (b), like MUL/DIV by powers of two
 LIM a b c clamp to a de�ned range: (a) input (b) min (c) max
 WRAP a b c wrapped range de�ning: (a) input (b) min (c) max
 QT a b round (a) to closest multiple of (b): quantize

Special case operators
These act only the hardware and don't return a value.

 TR.TOG a toggle TR (a)
 TR.PULSE a pulse TR (a) using TR.TIME as an interval

NB: TR.PULSE inverts the current state of the TR output, so if the trigger is high
with the pulse arrives, it will be an inverted pulse.

Modi�ed commands: PRE
A PRE is a short command that modi�es the remainder of a command. A PRE needs a separator
(colon) to indicate the command it will act upon.

 PROB a : .. potential to execute with (a) probability [0-100]
 DEL a : .. delay (postpone) command by (a) ms
 DEL.CLR kill all delays

 S : .. put command on the stack
 S.CLR clear the stack
 S.ALL execute every command on the stack
 S.POP execute most recent command (pop)
 S.L length of queue (read only)

 IF a : .. if (a) is not zero, execute command
 ELIF a : .. execute on failed IF/ELIF, and (a) is not zero
 ELSE .. execute on failed IF/ELIF

 L a b : ... LOOP. execute command with I values (a) to (b)

Patterns

 P a get value at index (a)
 P a b set value at index (a) to (b)
 P.N a select bank (a)
 PN a b get pattern (a) index (b)
 PN a b c set pattern (a) index (b) to (c)

Note: For `P` and `PN`, negative index values index from the end (backwards) rather than beginning.

pattern manipulation: these commands change pattern length:

 P.INS a b insert value (b) at index (a), shift later values down
 P.RM a delete value at (a), shift later values up
 P.PUSH a add value (a) to end of pattern (like a stack)
 P.POP remove and return value from end of pattern (stack)

pattern attributes: get current values by omitting a value

 P.L a get/set length, nondestructive to data
 P.WRAP a enable/disable (or get) wrapping [0/1]
 NB: P.WRAP changes behavior of P.PREV / P.NEXT
 P.START a get/set start location
 P.END a get/set end location

patterns have a "read head" pointer that can be manipulated

 P.I a get/set index position
 P.HERE read value at index
 P.NEXT increment index then read
 P.PREV decrement index then read

Note: an argument to P.HERE, P.NEXT or P.PREV will move the "read head" pointer and then set the
new index to the input value.

Remote

White Whale
 II WW.PRESET recall preset
 II WW.POS cut to position
 II WW.SYNC cut to position, hard sync clock (if clocked internally)
 II WW.START set loop start
 II WW.END set loop end
 II WW.PMODE set play mode (0: normal, 1: reverse, 2: drunk, 3: rand)
 II WW.PATTERN change pattern
 II WW.QPATTERN change pattern (queued) after current pattern ends
 II WW.MUTE1 mute trigger 1 (0 = on, 1 = mute)
 II WW.MUTE2 mute trigger 2 (0 = on, 1 = mute)
 II WW.MUTE3 mute trigger 3 (0 = on, 1 = mute)
 II WW.MUTE4 mute trigger 4 (0 = on, 1 = mute)
 II WW.MUTEA mute cv A (0 = on, 1 = mute)
 II WW.MUTEB mute cv B (0 = on, 1 = mute)

Meadowphysics
 II MP.PRESET recall preset
 II MP.RESET reset positions
 II MP.SYNC reset positions & hard sync (if clocked internally)
 II MP.MUTE mutes the output of a channel (1 - 8)
 II MP.UNMUTE unmutes/enables the output (1 - 8)
 II MP.FREEZE freezes the advancement of a channel (1 - 8)
 II MP.UNFREEZE unfreezes/enables advancement of the channel (1 - 8)

Earthsea
 II ES.PRESET recall preset
 II ES.MODE set pattern clock mode (0 = normal, 1 = II clock)
 II ES.CLOCK (if II clocked) next pattern event
 II ES.RESET reset pattern to start (and start playing)
 II ES.PATTERN set playing pattern
 II ES.TRANS set transposition
 II ES.STOP stop pattern playback
 II ES.TRIPLE recall triple shape (1-4)
 II ES.MAGIC magic shape (1: halfspeed, 2: doublespeed, 3: linearize)

Nomenclature
SCRIPT: multiple commands
COMMAND: a series (one line) of words
WORD: a text string separated by a space: value, operator, variable, pre
VALUE: a number
OPERATOR: a function, may need value(s) as argument(s), may return value
VARIABLE: named memory storage
PRE: condition/rule that applies to rest of the command: del, prob, if, s

Parameters
Parameters are like variables, but tied to functionality of the software or hardware. CV & TR are arrays
and require an index argument. IN and PARAM provide CV and physical input into a script. Their state
can be read with the listed parameters. Reading and writing is similar to variables-- assignment
happens when the parameter is leftmost in the command (and requires an additional argument: the
value to take).

 TR A-D set TR value (0-1)
 TR.TIME A-D time for TR.PULSE

 CV 1-4 CV target value
 CV.SLEW 1-4 CV slew time in ms (how long to reach the target)
 CV.SET 1-4 set CV value directly, ignoring slew time
 CV.OFF 1-4 CV o�set (added to CV value at �nal stage)

 IN get value of IN jack (0-16383)
 PARAM get value of PARAM knob (0-16383)

 M metro time (ms). M script executes at this interval
 M.ACT [0/1] enable/disable metro
 M.RESET hard reset metro count without triggering

 TIME timer value. counts up in ms.
 TIME.ACT [0/1] enable/disable timer counting

 SCENE read/recall scene

Variables

 X, Y, Z general purpose
 T typically used for time values, but also general
 A-D assigned 1-4 by default (for TR labeling), reassignable

Special variables

 I overwritten by the L (loop) PRE, but can be general.
 O auto-increments on each read.
 DRUNK changes by -1, 0, or 1 upon each read, saving state.
 Q implements a queue or shift register.

 Q.N sets the read position.
 Q.AVG will return the average of the entire queue

 NB: Set Q.AVG to set the entire queue to the speci�ed value.

Data and Tables
Working range is signed 16 bit: -32768 to 32767
Built-in constant tables for easy note and voltage conversion:

 N 0-127 equal temp semi (negatives accepted as well)
 V 0-10 volt lookup (0V to 10V)
 VV 0-1000 volt lookup with decimal precision (0.00V to 10.00V)

Operators
Operators take a variable number of parameters (including none) and typically return one value.

 RAND a generate random number 0-(a)
 RRAND a b generate random number from (a) to (b)
 TOSS return random: 0 or 1
 AVG a b return average of two arguments (a) and (b)
 MIN/MAX a b choose lesser/greater of two inputs (a) and (b)
 ADD/SUB/MUL a b arithmetic
 DIV/MOD a b arithmetic
 EQ/NE/GT/LT a b logic: equals, not equals, greater than, less than
 EZ/NZ a logic: equals zero, not zero
 RSH/LSH a b shift (a) by (b), like MUL/DIV by powers of two
 LIM a b c clamp to a de�ned range: (a) input (b) min (c) max
 WRAP a b c wrapped range de�ning: (a) input (b) min (c) max
 QT a b round (a) to closest multiple of (b): quantize

Special case operators
These act only the hardware and don't return a value.

 TR.TOG a toggle TR (a)
 TR.PULSE a pulse TR (a) using TR.TIME as an interval

NB: TR.PULSE inverts the current state of the TR output, so if the trigger is high
with the pulse arrives, it will be an inverted pulse.

Modi�ed commands: PRE
A PRE is a short command that modi�es the remainder of a command. A PRE needs a separator
(colon) to indicate the command it will act upon.

 PROB a : .. potential to execute with (a) probability [0-100]
 DEL a : .. delay (postpone) command by (a) ms
 DEL.CLR kill all delays

 S : .. put command on the stack
 S.CLR clear the stack
 S.ALL execute every command on the stack
 S.POP execute most recent command (pop)
 S.L length of queue (read only)

 IF a : .. if (a) is not zero, execute command
 ELIF a : .. execute on failed IF/ELIF, and (a) is not zero
 ELSE .. execute on failed IF/ELIF

 L a b : ... LOOP. execute command with I values (a) to (b)

Patterns

 P a get value at index (a)
 P a b set value at index (a) to (b)
 P.N a select bank (a)
 PN a b get pattern (a) index (b)
 PN a b c set pattern (a) index (b) to (c)

Note: For `P` and `PN`, negative index values index from the end (backwards) rather than beginning.

pattern manipulation: these commands change pattern length:

 P.INS a b insert value (b) at index (a), shift later values down
 P.RM a delete value at (a), shift later values up
 P.PUSH a add value (a) to end of pattern (like a stack)
 P.POP remove and return value from end of pattern (stack)

pattern attributes: get current values by omitting a value

 P.L a get/set length, nondestructive to data
 P.WRAP a enable/disable (or get) wrapping [0/1]
 NB: P.WRAP changes behavior of P.PREV / P.NEXT
 P.START a get/set start location
 P.END a get/set end location

patterns have a "read head" pointer that can be manipulated

 P.I a get/set index position
 P.HERE read value at index
 P.NEXT increment index then read
 P.PREV decrement index then read

Note: an argument to P.HERE, P.NEXT or P.PREV will move the "read head" pointer and then set the
new index to the input value.

Remote

White Whale
 II WW.PRESET recall preset
 II WW.POS cut to position
 II WW.SYNC cut to position, hard sync clock (if clocked internally)
 II WW.START set loop start
 II WW.END set loop end
 II WW.PMODE set play mode (0: normal, 1: reverse, 2: drunk, 3: rand)
 II WW.PATTERN change pattern
 II WW.QPATTERN change pattern (queued) after current pattern ends
 II WW.MUTE1 mute trigger 1 (0 = on, 1 = mute)
 II WW.MUTE2 mute trigger 2 (0 = on, 1 = mute)
 II WW.MUTE3 mute trigger 3 (0 = on, 1 = mute)
 II WW.MUTE4 mute trigger 4 (0 = on, 1 = mute)
 II WW.MUTEA mute cv A (0 = on, 1 = mute)
 II WW.MUTEB mute cv B (0 = on, 1 = mute)

Meadowphysics
 II MP.PRESET recall preset
 II MP.RESET reset positions
 II MP.SYNC reset positions & hard sync (if clocked internally)
 II MP.MUTE mutes the output of a channel (1 - 8)
 II MP.UNMUTE unmutes/enables the output (1 - 8)
 II MP.FREEZE freezes the advancement of a channel (1 - 8)
 II MP.UNFREEZE unfreezes/enables advancement of the channel (1 - 8)

Earthsea
 II ES.PRESET recall preset
 II ES.MODE set pattern clock mode (0 = normal, 1 = II clock)
 II ES.CLOCK (if II clocked) next pattern event
 II ES.RESET reset pattern to start (and start playing)
 II ES.PATTERN set playing pattern
 II ES.TRANS set transposition
 II ES.STOP stop pattern playback
 II ES.TRIPLE recall triple shape (1-4)
 II ES.MAGIC magic shape (1: halfspeed, 2: doublespeed, 3: linearize)

monome teletype
algorithmic ecosystem

http://monome.org/docs/modular

