
Teletype v3.1.0 Documentation

Contents

1 Introduction 3

2 Updates 4
Version 3.1 . 4
Version 3.0 . 5
Version 2.2 . 8
Version 2.1 . 10
Version 2.0 . 12

3 Quickstart 15
Panel . 15
LIVE mode . 16
EDIT mode . 16
Patterns . 17
Scenes . 19
USB Backup . 20
Commands . 20
Continuing . 22

4 Keys 23
Global key bindings . 23
Text editing . 23
Live mode . 24
Edit mode . 25
Tracker mode . 25
Preset read mode . 26
Preset write mode . 26
Help mode . 27

5 OPs and MODs 28
Variables . 29
Hardware . 32
Patterns . 36
Control flow . 41
Maths . 46
Metronome . 50
Delay . 51
Stack . 53
Queue . 55
Seed . 56

1

Turtle . 57
Grid . 58
Ansible . 73
White Whale . 77
Meadowphysics . 80
Earthsea . 81
Orca . 83
Just Friends . 85
TELEXi . 87
TELEXo . 91
ER-301 . 105
16n . 106
W/ . 107
Matrixarchate . 108

6 Advanced 109
Teletype terminology . 109
Sub commands . 110
Aliases . 110
Avoiding non-determinism . 111
Grid integration . 111

A Alphabetical list of OPs and MODs 113

B Missing documentation 139

C Changelog 140
v3.1.0 . 140
v3.0.0 . 140
v2.2 . 141
v2.1 . 142
v2.0.1 . 142
v2.0 . 142
v1.4.1 . 143
v1.2.1 . 144
v1.2 . 144
v1.1 . 144
v1.0 . 145

2

1. Introduction

Teletype is a dynamic, musical event triggering platform.

• Teletype Studies1 - guided series of tutorials

• PDF command reference chart2 — PDF scene recall sheet3 — Default scenes4

• Current version: 3.1.0 — Firmware update procedure5

1https://monome.org/docs/modular/teletype/studies-1
2https://monome.org/docs/modular/teletype/TT_commands_3.0.pdf
3https://monome.org/docs/modular/teletype/TT_scene_RECALL_sheet.pdf
4http://monome.org/docs/modular/teletype/scenes-1.0/
5https://monome.org/docs/modular/update/

3

https://monome.org/docs/modular/teletype/studies-1
https://monome.org/docs/modular/teletype/TT_commands_3.0.pdf
https://monome.org/docs/modular/teletype/TT_scene_RECALL_sheet.pdf
http://monome.org/docs/modular/teletype/scenes-1.0/
https://monome.org/docs/modular/update/

2. Updates

Version 3.1

New operators

DEVICE.FLIP - change how screen is displayed and how I/O are numbered to let you mount the module
upside down

DEL.X, DEL.R - repeat an action multiple times, separated by a delay

J & K local script variables

SEED, R.SEED, TOSS.SEED, DRUNK.SEED, P.SEED, PROB.SEED - get/set seed for different random ops

SCENE.G - load another scene but keep the current grid configuration

SCRIPT.POL / $.POL - get / set script polarity. 1 to fire on rising edges as usual, 2 for falling edges, 3 for both.
indicated on live mode w/ mutes icon.

New Ansible ops

ANS.G / ANS.G.P - simulate ansible receiving a grid key press

ANS.A - simulate ansible receiving an arc encoder turn

ANS.G.LED / ANS.A.LED - read LED brightness of ansible grid / arc

New Kria ops

KR.CUE - get / set the cued Kria pattern

KR.PG - switch to Kria parameter page

Changes

DELAY_SIZE increased to 16 from 8

4

Bug fixes

some keyboards losing keystrokes1

metro rate not updated after INIT.SCENE2

Version 3.0

Major new features

Grid Integration

Grid integration allows you to use grid to visualize, control and execute teletype scripts. You can create your
own UIs using grid ops, or control Teletype directly with the Grid Control mode. Built in Grid Visualizer allows
designing and using grid scenes without a grid. For more information and examples of grid scenes please see
the Grid Studies3.

Improved script editing

You can now select multiple lines when editing scripts by holding shift. You can move the current selection
up and down with alt-<up> and alt-<down>. You can copy/cut/paste a multiline selection as well. To
delete selected lines without copying into the clipboard use alt-<delete>.

Three level undo is also now available with ctrl-z shortcut.

Support for the Orthogonal Devices ER-301 Sound Computer over i2c

You now can connect up to three ER-301s via i2c and address up to 100 virtual CV channels and 100 virtual TR
channels per ER-301. (The outputs range 1-100, 101-200, and 201-300 respectively.) To function, this requires
a slight mod to current in-market ER-301s and a specialized i2c cable that reorders two of the pins. Find more
information on the Orthogonal Devices ER-301 Wiki Teletype Integration Page4.

Support for the 16n Faderbank via i2c

The 16n Faderbank is an open-source sixteen fader controller with support for USB MIDI, standard MIDI, and
i2c communication with the Teletype. It operates just like an IN or PARAM (or the TXi for that matter) in that
you read values from the device. You use the operator FADER (or the alias FB) and the number of the slider

1https://github.com/monome/teletype/issues/156
2https://github.com/monome/teletype/issues/174
3https://github.com/scanner-darkly/teletype/wiki/GRID-INTEGRATION
4http://wiki.orthogonaldevices.com/index.php/ER-301/Teletype_Integration

5

https://github.com/monome/teletype/issues/156
https://github.com/monome/teletype/issues/174
https://github.com/scanner-darkly/teletype/wiki/GRID-INTEGRATION
http://wiki.orthogonaldevices.com/index.php/ER-301/Teletype_Integration

you wish to poll (1-16). Know that longer cables may require that you use a powered bus board even if you only
have one device on your Teletype’s i2c bus. (You will know that you have a problem if your Teletype randomly
hangs on reads.)

Support for the SSSR Labs SM010 Matrixarchate via i2c

The SSSR Labs SM010 Matrixarchate is a 16x8 IO Sequenceable Matrix Signal Router. Teletype integration
allows you to switch programs and control connections. For a complete list of available ops refer to the
manual. Information on how to connect the module can be found in the SM010 manual5.

Support for W/ via i2c

Support for controlling Whimsical Raps W/ module via i2c. See the respective section for a complete list of
available ops and refer to https://www.whimsicalraps.com/pages/w-type for more details.

New operators

? x y z is a ternary “if” operator, it will select between y and z based on the condition x.

New pattern ops

P.MIN PN.MIN P.MAX PN.MAX return the position for the first smallest/largest value in a pattern between the
START and END points.

P.RND / PN.RND return a randomly selected value in a pattern between the START and END points.

P.+ / PN.+ / P.- / PN.- increment/decrement a pattern value by the specified amount.

P.+W / PN.+W / P.-W / PN.-W same as above and wrap to the specified range.

New Telex ops

TO.CV.CALIB allows you to lock-in an offset across power cycles to calibrate your TELEX CV output
(TO.CV.RESET removes the calibration).

TO.ENV now accepts gate values (1/0) to trigger the attack and decay.

5https://www.sssrlabs.com/store/sm010/

6

https://www.sssrlabs.com/store/sm010/

New Kria ops

KR.CV x get the current CV value for channel x

KR.MUTE x KR.MUTE x y get/set mute state for channel x

KR.TMUTE x toggle mute state for channel x

KR.CLK x advance the clock for channel x

Ops for ER-301, 16n Faderbank, SM010, W/

Too many to list, please refer to their respective sections.

New aliases

$ for SCRIPT

RND / RRND RAND / RRAND

WRP for WRAP

SCL for SCALE

New keybindings

Hold shift while making line selection in script editing to select multiple lines. Use alt-<up> and
alt-<down> to move selected lines up and down. Copy/cut/paste shortcuts work with multiline selection
as well. To delete selected lines without copying into the clipboard use alt-<delete>.

While editing a line you can now use ctrl-<left> / ctrl-<right> to move by words.

ctrl-z provides three level undo in script editing.

Additional Alt-H shortcut is available to view the Help screen.

Alt-G in Live mode will turn on the Grid Visualizer, which has its own shortcuts. Refer to the Keys section for
a complete list.

The keybindings to insert a scaled knob value in the Tracker mode were changed from ctrl to ctrl-alt and
from shift to ctrl-shift.

Bug fixes

i2c initialization delayed to account for ER-301 bootup

last screen saved to flash

7

knob jitter when loading/saving scenes reduced

duplicate commands not added to history6

SCALE precision improved

PARAM set properly when used in the init script

PARAM and IN won’t reset to 0 after INIT.DATA

PN.HERE, P.POP, PN.POP will update the tracker screen7

P.RM was 1-based, now 0-based8

P.RM / PN.RM will not change pattern length if deleting outside of length range9

JI op fixed10

TIME and LAST are now 1ms accurate11

RAND / RRAND will properly work with large range values12

L .. 32767 won’t freeze13

New behavior

Previously, when pasting the clipboard while in script editing the pasted line would replace the current line. It
will now instead push the current line down. This might result in some lines being pushed beyond the script
limits - if this happens, use ctrl-z to undo the change, delete some lines and then paste again.

I would previously get initialized to 0 when executing a script. If you called a script from another script’s loop
this meant you had to use a variable to pass the loop’s current I value to the called script. This is not needed
anymore - when a script is called from another script its I value will be set to the current I value of the calling
script.

Version 2.2

Teletype version 2.2 introduces Chaos and Bitwise operators, Live mode view of variables, INIT operator, ability
to calibrate CV In and Param knob and set Min/Max scale values for both, a screensaver, Random Number
Generator, and a number of fixes and improvements.

6https://github.com/monome/teletype/issues/99
7https://github.com/monome/teletype/issues/151
8https://github.com/monome/teletype/issues/149
9https://github.com/monome/teletype/issues/150

10https://llllllll.co/t/teletype-the-ji-op/10553
11https://github.com/monome/teletype/issues/144
12https://github.com/monome/teletype/issues/143
13https://github.com/monome/teletype/issues/148

8

https://github.com/monome/teletype/issues/99
https://github.com/monome/teletype/issues/151
https://github.com/monome/teletype/issues/149
https://github.com/monome/teletype/issues/150
https://llllllll.co/t/teletype-the-ji-op/10553
https://github.com/monome/teletype/issues/144
https://github.com/monome/teletype/issues/143
https://github.com/monome/teletype/issues/148

Major new features

Chaos Operators

The CHAOS operator provides a new source of uncertainty to the Teletype via chaotic yet deterministic systems.
This operator relies on various chaotic maps for the creation of randomized musical events. Chaotic maps
are conducive to creating music because fractals contain a symmetry of repetition that diverges just enough
to create beautiful visual structures that at times also apply to audio. In mathematics a map is considered an
evolution function that uses polynomials to drive iterative procedures. The output from these functions can be
assigned to control voltages. This works because chaotic maps tend to repeat with slight variations offering
useful oscillations between uncertainty and predictability.

Bitwise Operators

Bitwise operators have been added to compliment the logic functions and offer the ability to maximize the use
of variables available on the Teletype.

Typically, when a variable is assigned a value it fully occupies that variable space; should you want to set
another you’ll have to use the next available variable. In conditions where a state of on, off, or a bitwise
mathematical operation can provide the data required, the inclusion of these operators give users far more
choices. Each variable normally contains 16 bits and Bitwise allows you to BSET, BGET, and BCLR a value
from a particular bit location among its 16 positions, thus supplying 16 potential flags in the same variable
space.

INIT

The new op family INIT features operator syntax for clearing various states from the unforgiving INIT with no
parameters that clears ALL state data (be careful as there is no undo) to the ability to clear CV, variable data,
patterns, scenes, scripts, time, ranges, and triggers.

Live Mode Variable Display

This helps the user to quickly check and monitor variables across the Teletype. Instead of single command
line parameter checks the user is now able to simply press the ~ key (Tilde) and have a persistent display of
eight system variables.

Screensaver

Screen saver engages after 90 minutes of inactivity

9

New Operators

• IN.SCALE min max sets the min/max values of the CV Input jack
• PARAM.SCALE min max set the min/max scale of the Parameter Knob
• IN.CAL.MIN sets the zero point when calibrating the CV Input jack
• IN.CAL.MAX sets the max point (16383) when calibrating the CV Input jack
• PARAM.CAL.MIN sets the zero point when calibrating the Parameter Kob
• PARAM.CAL.MAX sets the max point (16383) when calibrating the Parameter Kob
• R generate a random number
• R.MIN set the low end of the random number generator
• R.MAX set the upper end of the random number generator

Fixes

• Multiply now saturates at limits (-32768 / 32767) while previous behavior returned 0 at overflow
• Entered values now saturate at Int16 limits which are -32768 / 32767
• Reduced flash memory consumption by not storing TEMP script
• I now carries across DEL commands
• Corrected functionality of JI (Just Intonation) op for 1V/Oct tuning
• Reduced latency of IN op

Improvements

• Profiling code (optional developer feature)
• Screen now redraws only lines that have changed

Version 2.1

Teletype version 2.1 introduces new operators that mature the syntax and capability of the Teletype, as well
as several bug fixes and enhancement features.

Major new features

Tracker Data Entry Improvements

Data entry in the tracker screen is now buffered, requiring an ENTER keystroke to commit changes, or
SHIFT-ENTER to insert the value. All other navigation keystrokes will abandon data entry. The increment /
decrement keystrokes (] and [), as well as the negate keystroke (-) function immediately if not in data entry
mode, but modify the currently buffered value in edit mode (again, requiring a commit).

10

Turtle Operator

The Turtle operator allows 2-dimensional access to the patterns as portrayed out in Tracker mode. It uses new
operators with the @ prefix. You can @MOVE X Y the turtle relative to its current position, or set its direction in
degrees with @DIR and its speed with @SPEED and then execute a @STEP.

To access the value that the turtle operator points to, use @, which can also set the value with an argument.

The turtle can be constrained on the tracker grid by setting its fence with @FX1, @FY1, @FX2, and @FY2, or by
using the shortcut operator @F x1 y1 x2 y2. When the turtle reaches the fence, its behaviour is governed
by its fencemode, where the turtle can simply stop (@BUMP), wrap around to the other edge (@WRAP), or bounce
off the fence and change direction (@BOUNCE). Each of these can be set to 1 to enable that mode.

Setting @SCRIPT N will cause script N to execute whenever the turtle crosses the boundary to another cell.
This is different from simply calling @STEP; @SCRIPT N because the turtle is not guaranteed to change cells
on every step if it is moving slowly enough.

Finally, the turtle can be displayed on the tracker screen with @SHOW 1, where it will indicate the current cell
by pointing to it from the right side with the < symbol.

New Mods: EVERY, SKIP, and OTHER, plus SYNC

These mods allow rhythmic division of control flow. EVERY X: executes the post-command once per X at the
Xth time the script is called. SKIP X: executes it every time but the Xth. OTHER: will execute when the previous
EVERY/SKIP command did not.

Finally, SYNC X will set each EVERY and SKIP counter to X without modifying its divisor value. Using a negative
number will set it to that number of steps before the step. Using SYNC -1 will cause each EVERY to execute
on its next call, and each SKIP will not execute.

Script Line “Commenting”

Individual lines in scripts can now be disabled from execution by highlighting the line and pressing ALT-/.
Disabled lines will appear dim. This status will persist through save/load from flash, but will not carry over to
scenes saved to USB drive.

New Operators

W [condition]: is a new mod that operates as a while loop. The BREAK operator stops executing the
current script BPM [bpm] returns the number of milliseconds per beat in a given BPM, great for setting M.
LAST [script] returns the number of milliseconds since script was last called.

11

New Operator Behaviour

SCRIPT with no argument now returns the current script number. I is now local to its corresponding L state-
ment. IF/ELSE is now local to its script.

New keybindings

CTRL-1 through CTRL-8 toggle the mute status for scripts 1 to 8 respectively. CTRL-9 toggles the METRO
script. SHIFT-ENTER now inserts a line in Scene Write mode.

Bug fixes

Temporal recursion now possible by fixing delay allocation issue, e.g.: DEL 250: SCRIPT SCRIPT KILL now
clears TR outputs and stops METRO. SCENE will no longer execute from the INIT script on initial scene load.
AVG and Q.AVG now round up from offsets of 0.5 and greater.

Breaking Changes

As I is now local to L loops, it is no longer usable across scripts or as a general-purpose variable. As IF/ELSE
is now local to a script, scenes that relied on IF in one script and ELSE in another will be functionally broken.

Version 2.0

Teletype version 2.0 represents a large rewrite of the Teletype code base. There are many new language
additions, some small breaking changes and a lot of under the hood enhancements.

Major new features

Sub commands

Several commands on one line, separated by semicolons.

e.g. CV 1 N 60; TR.PULSE 1

See the section on “Sub commands” for more information.

12

Aliases

For example, use TR.P 1 instead of TR.PULSE 1, and use + 1 1, instead of ADD 1 1.

See the section on “Aliases” for more information.

PN versions of every P OP

There are now PN versions of every P OP. For example, instead of:

P.I 0
P.START 0
P.I 1
P.START 10

You can use:

PN.START 0 0
PN.START 1 10

TELEXi and TELEXo OPs

Lots of OPs have been added for interacting with the wonderful TELEXi input expander and TELEXo output
expander. See their respective sections in the documentation for more information.

New keybindings

The function keys can now directly trigger a script.

The <tab> key is now used to cycle between live, edit and pattern modes, and there are now easy access keys
to directly jump to a mode.

Many new text editing keyboard shortcuts have been added.

See the “Modes” documentation for a listing of all the keybindings.

USB memory stick support

You can now save you scenes to USB memory stick at any time, and not just at boot up. Just insert a USB
memory stick to start the save and load process. Your edit scene should not be effected.

It should also be significantly more reliable with a wider ranger of memory sticks.

WARNING: Please backup the contents of your USB stick before inserting it. Particularly with a freshly flashed
Teletype as you will end up overwriting all the saved scenes with blank ones.

13

Other additions

• Limited script recursion now allowed (max recursion depth is 8) including self recursion.
• Metro scripts limited to 25ms, but new M! op to set it as low as 2ms (at your own risk), see “Metronome”
OP section for more.

Breaking changes

• Removed the need for the II OP.

For example, II MP.PRESET 1 will become just MP.PRESET 1.

• Merge MUTE and UNMUTE OPs to MUTE x / MUTE x y.

See the documentation for MUTE for more information.

• Remove unused Meadowphysics OPs.

Removed: MP.SYNC, MP.MUTE, MP.UNMUTE, MP.FREEZE, MP.UNFREEZE.

• Rename Ansible Meadowphysics OPs to start with ME.

This was done to avoid conflicts with the Meadowphysics OPs.

WARNING: If you restore your scripts from a USB memory stick, please manually fix any changes first. Al-
ternatively, incorrect commands (due to the above changes) will be skipped when imported, please re-add
them.

Known issues

Visual glitches

The cause of these is well understood, and they are essentially harmless. Changing modes with the <tab>
key will force the screen to redraw. A fix is coming in version 2.1.

14

3. Quickstart

Panel

Figure 3.1: Panel Overlay

The keyboard is attached to the front panel, for typing commands. The commands can be executed immedi-
ately in LIVE mode or assigned to one of the eight trigger inputs in EDIT mode. The knob and in jack can be
used to set and replace values.

15

LIVE mode

Teletype starts up in LIVE mode. You’ll see a friendly > prompt, where commands are entered. The command:

TR.TOG A

will toggle trigger A after pressing enter. Consider:

CV 1 V 5
CV 2 N 7
CV 1 0

Here the first command sets CV 1 to 5 volts. The second command sets CV 2 to note 7 (which is 7 semitones
up). The last command sets CV 1 back to 0.

Data flows from right to left, so it becomes possible to do this:

CV 1 N RAND 12

Here a random note between 0 and 12 is set to CV 1.

We can change the behavior of a command with a PRE such as DEL:

DEL 500 : TR.TOG A

TR.TOG A will be delayed by 500ms upon execution.

A helpful display line appears above the command line in dim font. Here any entered commands will return
their numerical value if they have one.

SCRIPTS, or several lines of commands, can be assigned to trigger inputs. This is when things get musically
interesting. To edit each script, we shift into EDIT mode.

LIVE mode icons

Four small icons are displayed in LIVE mode to give some important feedback about the state of Teletype.
These icons will be brightly lit when the above is true, else will remain dim. They are, from left to right:

• Slew: CV outputs are currently slewing to a new destination.
• Delay: Commands are in the delay queue to be executed in the future.
• Stack: Commands are presently on the stack waiting for execution.
• Metro: Metro is currently active and the Metro script is not empty.

EDIT mode

Toggle between EDIT and LIVE modes by pushing TAB.

The prompt now indicates the script you’re currently editing:

16

• 1-8 indicates the script associated with corresponding trigger
• M is for the internal metronome
• I is the init script, which is executed upon scene recall

Script 1 will be executed when trigger input 1 (top left jack on the panel) receives a low-to-high voltage transition
(trigger, or front edge of a gate). Consider the following as script 1:

1:

TR.TOG A

Now when input 1 receives a trigger, TR.TOG A is executed, which toggles the state of output trigger A.

Scripts can have multiple lines:

1:

TR.TOG A
CV 1 V RAND 4

Now each time input 1 receives a trigger, CV 1 is set to a random volt between 0 and 4, in addition to output
trigger A being toggled.

Metronome

The M script is driven by an internal metronome, so no external trigger is required. By default the metronome
interval is 1000ms. You can change this readily (for example, in LIVE mode):

M 500

The metronome interval is now 500ms. You can disable/enable the metronome entirely with M.ACT:

M.ACT 0

Now the metronome is off, and the M script will not be executed. Set M.ACT to 1 to re-enable.

Patterns

Patterns facilitate musical data manipulation– lists of numbers that can be used as sequences, chord sets,
rhythms, or whatever you choose. Pattern memory consists four banks of 64 steps. Functions are provided
for a variety of pattern creation, transformation, and playback. The most basic method of creating a pattern
is by directly adding numbers to the sequence:

P.PUSH 5
P.PUSH 11
P.PUSH 9
P.PUSH 3

17

P.PUSH adds the provided value to the end of the list– patterns keep track of their length, which can be read
or modified with P.L. Now the pattern length is 4, and the list looks something like:

5, 11, 9, 3

Patterns also have an index P.I, which could be considered a playhead. P.NEXT will advance the index by
one, and return the value stored at the new index. If the playhead hits the end of the list, it will either wrap to
the beginning (if P.WRAP is set to 1, which it is by default) or simply continue reading at the final position.

So, this script on input 1 would work well:

1:

CV 1 N P.NEXT

Each time input 1 is triggered, the pattern moves forward one then CV 1 is set to the note value of the pattern
at the new index. This is a basic looped sequence. We could add further control on script 2:

2:

P.I 0

Since P.I is the playhead, trigger input 2 will reset the playhead back to zero. It won’t change the CV, as that
only happens when script 1 is triggered.

We can change a value within the pattern directly:

P 0 12

This changes index 0 to 12 (it was previously 5), so now we have 12, 11, 9, 3.

We’ve been working with pattern 0 up to this point. There are four pattern banks, and we can switch banks this
way:

P.N 1

Now we’re on pattern bank 1. P.NEXT, P.PUSH, P, (and several more commands) all reference the current
pattern bank. Each pattern maintains its own play index, wrap parameter, length, etc.

We can directly access and change any pattern value with the command PN:

PN 3 0 22

Here the first argument (3) is the bank, second (0) is the index, and last is the new value (22). You could do
this by doing P.N 3 then P 0 22 but there are cases where a direct read/write is needed in your patch.

Check the Command Set section below for more pattern commands.

Patterns are stored in flash with each scene!

TRACKER mode

Editing patterns with scripts or from the command line isn’t always ergonomic. When you’d like to visually edit
patterns, TRACKER mode is the way.

18

The TAB key cycles between LIVE, EDIT and TRACKER mode. You can also get directly to TRACKER mode by
pressing the NUM LOCK key. TRACKER mode is the one with 4 columns of numbers on the Teletype screen.

The current pattern memory is displayed in these columns. Use the arrow keys to navigate. Holding ALT will
jump by pages.

The edit position is indicated by the brightest number. Very dim numbers indicate they are outside the pattern
length.

Use the square bracket keys [and] to decrease/increase the values. Backspace sets the value to 0. Entering
numbers will overwrite a new value. You can cut/copy/paste with ALT-X-C-V.

Check the Keys section for a complete list of tracker shortcuts.

Scenes

A SCENE is a complete set of scripts and patterns. Stored in flash, scenes can be saved between sessions.
Many scenes ship as examples. On startup, the last used scene is loaded by Teletype.

Access the SCENE menu using ESCAPE. The bracket keys ([and]) navigate between the scenes. Use the
up/down arrow keys to read the scene text. This text will/should describe what the scene does generally along
with input/output functions. ENTER will load the selected scene, or ESCAPE to abort.

To save a scene, hold ALT while pushing ESCAPE. Use the brackets to select the destination save position.
Edit the text section as usual– you can scroll down for many lines. The top line is the name of the scene.
ALT-ENTER will save the scene to flash.

Keyboard-less Scene Recall

To facilitate performance without the need for the keyboard, scenes can be recalled directly from the module’s
front panel.

• Press the SCENE RECALL button next to the USB jack on the panel.
• Use the PARAM knob to highlight your desired preset.
• Hold the SCENE RECALL button for 1 second to load the selected scene.

Init Script

The INIT script (represented as I) is executed when a preset is recalled. This is a good place to set initial
values of variables if needed, like metro time M or time enable TIME.ACT for example.

19

USB Backup

Teletype’s scenes can be saved and loaded from a USB flash drive. When a flash drive is inserted, Teletype will
recognize it and go into disk mode. First, all 32 scenes will be written to text files on the drive with names of the
form tt##s.txt. For example, scene 5 will be saved to tt05s.txt. The screen will display WRITE.......
as this is done.

Once complete, Teletype will attempt to read any files named tt##.txt and load them into memory. For ex-
ample, a file named tt13.txtwould be loaded as scene 13 on Teletype. The screen will displayREAD......
Once this process is complete, Teletype will return to LIVE mode and the drive can be safely removed.

For best results, use an FAT-formatted USB flash drive. If Teletype does not recognize a disk that is inserted
within a few seconds, it may be best to try another.

An example of possible scenes to load, as well as the set of factory default scenes, can be found at the Teletype
Codex1.

Commands

Nomenclature

• SCRIPT – multiple commands
• COMMAND – a series (one line) of words
• WORD – a text string separated by a space: value, operator, variable, mod
• VALUE – a number
• OPERATOR – a function, may need value(s) as argument(s), may return value
• VARIABLE – named memory storage
• MOD – condition/rule that applies to rest of the command, e.g.: del, prob, if, s

Syntax

Teletype uses prefix notation. Evaluation happens from right to left.

The left value gets assignment (set). Here, temp variable X is assigned zero:

X 0

Temp variable Y is assigned to the value of X:

Y X

X is being read (get X), and this value is being used to set Y.

Instead of numbers or variables, we can use operators to perform more complex behavior:

1https://github.com/monome-community/teletype-codex

20

https://github.com/monome-community/teletype-codex

X TOSS

TOSS returns a random state, either 0 or 1 on each call.

Some operators require several arguments:

X ADD 1 2

Here ADD needs two arguments, and gets 1 and 2. X is assigned the result of ADD, so X is now 3.

If a value is returned at the end of a command, it is printed as a MESSAGE. This is visible in LIVE mode just
above the command prompt. (In the examples below ignore the // comments).

8 // prints 8
X 4
X // prints 4
ADD 8 32 // prints 40

Many parameters are indexed, such as CV and TR. This means that CV and TR have multiple values (in this
case, each has four.) We pass an extra argument to specify which index we want to read or write.

CV 1 0

Here CV 1 is set to 0. You can leave off the 0 to print the value.

CV 1 // prints value of CV 1

Or, this works too:

X CV 1 // set X to current value of CV 1

Here is an example of using an operator RAND to set a random voltage:

CV 1 V RAND 4

First a random value between 0 and 3 is generated. The result is turned into a volt with a table lookup, and the
final value is assigned to CV 1.

The order of the arguments is important, of course. Consider:

CV RRAND 1 4 0

RRAND uses two arguments, 1 and 4, returning a value between these two. This command, then, chooses a
random CV output (1-4) to set to 0. This might seem confusing, so it’s possible to clarify it by pulling it apart:

X RRAND 1 4
CV X 0

Here we use X as a temp step before setting the final CV.

With some practice it becomes easier to combine many functions into the same command.

Furthermore, you can use a semicolon to include multiple commands on the same line:

X RRAND 1 4; CV X 0

This is particularly useful in INIT scripts where you may want to initialize several values at once:

21

A 66; X 101; TR.TIME 1 20;

Continuing

Don’t forget to checkout the Teletype Studies2 for an example-driven guide to the language.

2https://monome.org/docs/modular/teletype/studies-1

22

https://monome.org/docs/modular/teletype/studies-1

4. Keys

Global key bindings

These bindings work everywhere.

Key Action

<tab> change modes, live to edit to pattern and back

<esc> preset read mode, or return to last mode

alt-<esc> preset write mode

win-<esc> clear delays, stack and slews

shift-alt-? / alt-h help text, or return to last mode

<F1> to <F8> run corresponding script

<F9> run metro script

<F10> run init script

alt-<F1> to alt-<F8> edit corresponding script

alt-<F9> edit metro script

alt-<F10> edit init script

ctrl-<F1> to ctrl-<F8> mute/unmute corresponding script

ctrl-<F9> enable/disable metro script

<numpad-1> to <numpad-8> run corresponding script

<num lock> / <F11> jump to pattern mode

<print screen> / <F12> jump to live mode

Text editing

These bindings work when entering text or code.

In most cases, the clipboard is shared between live, edit and the 2 preset modes.

Key Action

<left> / ctrl-b move cursor left

<right> / ctrl-f move cursor right

23

Key Action

ctrl-<left> move left by one word

ctrl-<right> move right by one word

<home> / ctrl-a move to beginning of line

<end> / ctrl-e move to end of line

<backspace> / ctrl-h backwards delete one character

<delete> / ctrl-d forwards delete one character

shift-<backspace> / ctrl-u delete from cursor to beginning

shift-<delete> / ctrl-e delete from cursor to end

alt-<backspace> / ctrl-w delete from cursor to beginning of word

ctrl-x / alt-x cut to clipboard

ctrl-c / alt-c copy to clipboard

ctrl-v / alt-v paste to clipboard

Live mode

Key Action

<down> / C-n history next

<up> / C-p history previous

<enter> execute command

~ toggle variables

[/] switch to edit mode

alt-g toggle grid visualizer

alt-<arrows> move grid cursor

alt-shift-<arrows> select grid area

alt-<space> emulate grid press

alt-/ switch grid pages

alt-\ toggle grid control view

alt-<prt sc> insert grid x/y/w/h

In full grid visualizer mode pressing alt is not required.

24

Edit mode

In edit mode multiple lines can be selected and used with the clipboard.

Key Action

<down> / C-n line down

<up> / C-p line up

[previous script

] next script

<enter> enter command

shift-<enter> insert command

alt-/ toggle line comment

shift-<up> expand selection up

shift-<down> expand selection down

alt-<delete> delete selection

alt-<up> move selection up

alt-<down> move selection down

ctrl-z undo (3 levels)

Tracker mode

The tracker mode clipboard is independent of text and code clipboard.

Key Action

<down> move down

alt-<down> move a page down

<up> move up

alt-<up> move a page up

<left> move left

alt-<left> move to the very left

<right> move right

alt-<right> move to the very right

[decrement by 1

] increment by 1

<backspace> delete a digit

shift-<backspace> delete an entry, shift numbers up

25

Key Action

<enter> commit edit (increase length if cursor in position after last entry)

shift-<enter> commit edit, then duplicate entry and shift downwards (increase length as <enter>)

alt-x cut value (n.b. ctrl-x not supported)

alt-c copy value (n.b. ctrl-c not supported)

alt-v paste value (n.b. ctrl-v not supported)

shift-alt-v insert value

shift-l set length to current position

alt-l go to current length entry

shift-s set start to current position

alt-s go to start entry

shift-e set end to current position

alt-e go to end entry

- negate value

<space> toggle non-zero to zero, and zero to 1

0 to 9 numeric entry

shift-2 (@) toggle turtle display marker (<)

ctrl-alt insert knob value scaled to 0..31

ctrl-shift insert knob value scaled to 0..1023

Preset read mode

Key Action

<down> / C-n line down

<up> / C-p line up

<left> / [preset down

<right> /] preset up

<enter> load preset

Preset write mode

26

Key Action

<down> / C-n line down

<up> / C-p line up

[preset down

] preset up

<enter> enter text

shift-<enter> insert text

alt-<enter> save preset

Help mode

Key Action

<down> / C-n line down

<up> / C-p line up

<left> / [previous page

<right> /] next page

27

5. OPs and MODs

28

Variables

General purpose temp vars: X, Y, Z, and T.

T typically used for time values, but can be used freely.

A-D are assigned 1-4 by default (as a convenience for TR labeling, but TR can be addressed with simply 1-4).
All may be overwritten and used freely.

OP OP (set) (aliases) Description

A A x get / set the variable A, default 1

B B x get / set the variable B, default 2

C C x get / set the variable C, default 3

D D x get / set the variable D, default 4

DRUNK DRUNK x changes by -1, 0, or 1 upon each read
saving its state, setting will give it a new
value for the next read

DRUNK.MIN DRUNK.MIN x set the lower bound for DRUNK, default 0

DRUNK.MAX DRUNK.MAX x set the upper bound for DRUNK, default
255

DRUNK.WRAP DRUNK.WRAP x should DRUNK wrap around when it
reaches it’s bounds, default 0

FLIP FLIP x returns inverted state (0 or 1) on each
read (also settable)

I I x get / set the variable I

O O x auto-increments after each access, can
be set, starting value 0

O.INC O.INC x how much to increment O by on each
invocation, default 1

O.MIN O.MIN x the lower bound for O, default 0

O.MAX O.MAX x the upper bound for O, default 63

O.WRAP O.WRAP x should O wrap when it reaches its bounds,
default 1

T T x get / set the variable T, typically used for
time, default 0

TIME TIME x timer value, counts up in ms., wraps after
32s, can be set

TIME.ACT TIME.ACT x enable or disable timer counting, default
1

LAST x get value in milliseconds since last script
run time

X X x get / set the variable X, default 0

29

OP OP (set) (aliases) Description

Y Y x get / set the variable Y, default 0

Z Z x get / set the variable Z, default 0

J J x get / set the variable J

K K x get / set the variable K

DRUNK

• DRUNK / DRUNK x

Changes by -1, 0, or 1 upon each read, saving its state. Setting DRUNK will give it a new value for the next read,
and drunkedness will continue on from there with subsequent reads.

Setting DRUNK.MIN and DRUNK.MAX controls the lower and upper bounds (inclusive) that DRUNK can reach.
DRUNK.WRAP controls whether the value can wrap around when it reaches it’s bounds.

I

• I / I x

Get / set the variable I, this variable is overwritten by L, but can be used freely outside an L loop. Each script
gets its own I variable, so if you call a script from another script’s loop you can still use and modify I without
affecting the calling loop. In this scenario the script getting called will have its I value initialized with the
calling loop’s current I value.

O

• O / O x

Auto-increments by O.INC after each access. The initial value is 0. The lower and upper bounds can be set
by O.MIN (default 0) and O.MAX (default 63). O.WRAP controls if the value wraps when it reaches a bound
(default is 1).

Example:

O => 0
O => 1
X O
X => 2
O.INC 2
O => 3 (O increments after it's accessed)
O => 5
O.INC -2

30

O 2
O => 2
O => 0
O => 63
O => 61

LAST

• LAST x

Gets the number of milliseconds since the current script was run. From the live mode, shows time elapsed
since last run of I script.

For example, one-line tap tempo:

M LAST SCRIPT

Running this script twice will set the metronome to be the time between runs.

J

• J / J x

get / set the variable J, each script gets its own J variable, so if you call a script from another script you can
still use and modify J without affecting the calling script.

K

• K / K x

get / set the variable K, each script gets its own K variable, so if you call a script from another script you can
still use and modify K without affecting the calling script.

31

Hardware

The Teletype trigger inputs are numbered 1-8, the CV and trigger outputs 1-4. See the Ansible documentation
for details of the Ansible output numbering when in Teletype mode.

OP OP (set) (aliases) Description

CV x CV x y CV target value

CV.OFF x CV.OFF x y CV offset added to output

CV.SET x Set CV value

CV.SLEW x CV.SLEW x y Get/set the CV slew time in ms

IN Get the value of IN jack (0-16383)

IN.SCALE min max Set static scaling of the IN CV to
between min and max.

PARAM PRM Get the value of PARAM knob (0-16383)

PARAM.SCALE min max Set static scaling of the PARAM knob to
between min and max.

IN.CAL.MIN Reads the input CV and assigns the
voltage to the zero point

IN.CAL.MAX Reads the input CV and assigns the
voltage to the max point

IN.CAL.RESET Resets the input CV calibration

PARAM.CAL.MIN Reads the Parameter Knob minimum
position and assigns a zero value

PARAM.CAL.MAX Reads the Parameter Knob maximum
position and assigns the maximum point

PARAM.CAL.RESET Resets the Parameter Knob calibration

TR x TR x y Set trigger output x to y (0-1)

TR.POL x TR.POL x y Set polarity of trigger output x to y (0-1)

TR.TIME x TR.TIME x y Set the pulse time of trigger x to y ms

TR.TOG x Flip the state of trigger output x

TR.PULSE x TR.P Pulse trigger output x

MUTE x MUTE x y Disable trigger input x

STATE x Read the current state of input x

DEVICE.FLIP Flip the screen/inputs/outputs

CV

• CV x / CV x y

32

Get the value of CV associated with output x, or set the CV output of x to y.

CV.OFF

• CV.OFF x / CV.OFF x y

Get the value of the offset added to the CV value at output x. The offset is added at the final stage. Set the
value of the offset added to the CV value at output x to y.

CV.SET

• CV.SET x

Set the CV value at output x bypassing any slew settings.

CV.SLEW

• CV.SLEW x / CV.SLEW x y

Get the slew time in ms associated with CV output x. Set the slew time associated with CV output x to y ms.

IN

• IN

Get the value of the IN jack. This returns a valuue in the range 0-16383.

PARAM

• PARAM
• alias: PRM

Get the value of the PARAM knob. This returns a valuue in the range 0-16383.

IN.CAL.MIN

• IN.CAL.MIN

1. Connect a patch cable from a calibrated voltage source
2. Set the voltage source to 0 volts
3. Execute IN.CAL.MIN from the live terminal
4. Call IN and confirm the 0 result

33

IN.CAL.MAX

• IN.CAL.MAX

5. Set the voltage source to target maximum voltage (10V)
6. Execute IN.CAL.MAX from the live terminal
7. Call IN and confirm that the result is 16383

PARAM.CAL.MIN

• PARAM.CAL.MIN

1. Turn the PARAM knob all the way to the left
2. Execute PARAM.CAL.MIN from the live terminal
3. Call PARAM and confirm the 0 result

PARAM.CAL.MAX

• PARAM.CAL.MAX

4. Turn the knob all the way to the right
5. Execute PARAM.CAL.MAX from the live terminal
6. Call PARAM and verify that the result is 16383

TR

• TR x / TR x y

Get the current state of trigger output x. Set the state of trigger output x to y (0-1).

TR.POL

• TR.POL x / TR.POL x y

Get the current polarity of trigger output x. Set the polarity of trigger output x to y (0-1). When TR.POL = 1, the
pulse is 0 to 1 then back to 0. When TR.POL = 0, the inverse is true, 1 to 0 to 1.

TR.TIME

• TR.TIME x / TR.TIME x y

Get the pulse time of trigger output x. Set the pulse time of trigger output x to yms.

34

TR.TOG

• TR.TOG x

Flip the state of trigger output x.

TR.PULSE

• TR.PULSE x
• alias: TR.P

Pulse trigger output x.

MUTE

• MUTE x / MUTE x y

Mute the trigger input on x (0-7) when y is non-zero.

STATE

• STATE x

Read the current state of trigger input x (0=low, 1=high).

DEVICE.FLIP

• DEVICE.FLIP

Flip the screen, the inputs and the outputs. This op is useful if you want to mount your Teletype upside down.
The new state will be saved to flash.

35

Patterns

Patterns facilitate musical data manipulation– lists of numbers that can be used as sequences, chord sets,
rhythms, or whatever you choose. Pattern memory consists four banks of 64 steps. Functions are provided
for a variety of pattern creation, transformation, and playback.

New in teletype 2.0, a second version of all Pattern ops have been added. The original P ops (P, P.L, P.NEXT,
etc.) act upon the ‘working pattern’ as defined by P.N. By default the working pattern is assigned to pattern 0
(P.N 0), in order to execute a command on pattern 1 using P ops you would need to first reassign the working
pattern to pattern 1 (P.N 1).

The new set of ops, PN (PN, PN.L, PN.NEXT, etc.), include a variable to designate the pattern number they
act upon, and don’t effect the pattern assignment of the ‘working pattern’ (ex: PN.NEXT 2 would increment
pattern 2 one index and return the value at the new index). For simplicity throughout this introduction we will
only refer to the P ops, but keep in mind that they now each have a PN counterpart (all of which are detailed
below)

Both patterns and their arrays of numbers are indexed from 0. This makes the first pattern number 0, and
the first value of a pattern is index 0. The pattern index (P.I) functions like a playhead which can be moved
throughout the pattern and/or read using ops: P, P.I, P.HERE, P.NEXT, and P.PREV. You can contain pat-
tern movements to ranges of a pattern and define wrapping behavior using ops: P.START, P.END, P.L, and
P.WRAP.

Values can be edited, added, and retrieved from the command line using ops: P, P.INS, P.RM, P.PUSH,
P.HERE, P.NEXT, and P.PREV. Some of these ops will additionally impact the pattern length upon their exe-
cution: P.INS, P.RM, P.PUSH, and P.POP.

To see your current pattern data use the <tab> key to cycle through live mode, edit mode, and pattern mode.
In pattern mode each of the 4 patterns is represented as a column. You can use the arrow keys to navigate
throughout the 4 patterns and their 64 values. For reference a key of numbers runs the down the lefthand side
of the screen in pattern mode displaying 0-63.

From a blank set of patterns you can enter data by typing into the first cell in a column. Once you hit <enter>
you will move to the cell below and the pattern length will become one step long. You can continue this process
to write out a pattern of desired length. The step you are editing is always the brightest. As you add steps to
a pattern by editing the value and hitting <enter> they become brighter than the unused cells. This provides
a visual indication of the pattern length.

The start and end points of a pattern are represented by the dotted line next to the column, and the highlighted
dot in this line indicates the current pattern index for each of the patterns. See the key bindings for an extensive
list of editing shortcuts available within pattern mode.

OP OP (set) (aliases) Description

P.N P.N x get/set the pattern number for the
working pattern, default 0

P x P x y get/set the value of the working pattern
at index x

36

OP OP (set) (aliases) Description

PN x y PN x y z get/set the value of pattern x at index y

P.L P.L x get/set pattern length of the working
pattern, non-destructive to data

PN.L x PN.L x y get/set pattern length of pattern x.
non-destructive to data

P.WRAP P.WRAP x when the working pattern reaches its
bounds does it wrap (0/1), default 1
(enabled)

PN.WRAP x PN.WRAP x y when pattern x reaches its bounds does
it wrap (0/1), default 1 (enabled)

P.START P.START x get/set the start location of the working
pattern, default 0

PN.START x PN.START x y get/set the start location of pattern x,
default 0

P.END P.END x get/set the end location of the working
pattern, default 63

PN.END x PN.END x y get/set the end location of the pattern x,
default 63

P.I P.I x get/set index position for the working
pattern.

PN.I x PN.I x y get/set index position for pattern x

P.HERE P.HERE x get/set value at current index of working
pattern

PN.HERE x PN.HERE x y get/set value at current index of pattern x

P.NEXT P.NEXT x increment index of working pattern then
get/set value

PN.NEXT x PN.NEXT x y increment index of pattern x then get/set
value

P.PREV P.PREV x decrement index of working pattern then
get/set value

PN.PREV x PN.PREV x y decrement index of pattern x then get/set
value

P.INS x y insert value y at index x of working
pattern, shift later values down,
destructive to loop length

PN.INS x y z insert value z at index y of pattern x, shift
later values down, destructive to loop
length

P.RM x delete index x of working pattern, shift
later values up, destructive to loop length

37

OP OP (set) (aliases) Description

PN.RM x y delete index y of pattern x, shift later
values up, destructive to loop length

P.PUSH x insert value x to the end of the working
pattern (like a stack), destructive to loop
length

PN.PUSH x y insert value y to the end of pattern x (like
a stack), destructive to loop length

P.POP return and remove the value from the end
of the working pattern (like a stack),
destructive to loop length

PN.POP x return and remove the value from the end
of pattern x (like a stack), destructive to
loop length

P.MIN find the first minimum value in the pattern
between the START and END for the
working pattern and return its index

PN.MIN x find the first minimum value in the pattern
between the START and END for pattern
x and return its index

P.MAX find the first maximum value in the
pattern between the START and END for
the working pattern and return its index

PN.MAX x find the first maximum value in the
pattern between the START and END for
pattern x and return its index

P.RND return a value randomly selected between
the start and the end position

PN.RND x return a value randomly selected between
the start and the end position of pattern x

P.+ x y increase the value of the working pattern
at index x by y

PN.+ x y z increase the value of pattern x at index y
by z

P.- x y decrease the value of the working pattern
at index x by y

PN.- x y z decrease the value of pattern x at index y
by z

P.+W x y a b increase the value of the working pattern
at index x by y and wrap it to a..b range

PN.+W x y z a b increase the value of pattern x at index y
by z and wrap it to a..b range

38

OP OP (set) (aliases) Description

P.-W x y a b decrease the value of the working pattern
at index x by y and wrap it to a..b range

PN.-W x y z a b decrease the value of pattern x at index y
by z and wrap it to a..b range

P.N

• P.N / P.N x

get/set the pattern number for the working pattern, default 0. All P ops refer to this pattern.

P

• P x / P x y

get/set the value of the working pattern at index x. All positive values (0-63) can be set or returned while
index values greater than 63 clip to 63. Negative x values are indexed backwards from the end of the pattern
length of the working pattern.

Example:

with a pattern length of 6 for the working pattern:

P 10 retrieves the working pattern value at index 6

P.I -2 retrieves the working pattern value at index 4

This applies to PN as well, except the pattern number is the first variable and a second variable specifies the
index.

P.WRAP

• P.WRAP / P.WRAP x

when the working pattern reaches its bounds does it wrap (0/1). With PN.WRAP enabled (1), when an index
reaches its upper or lower bound using P.NEXT or P.PREV it will wrap to the other end of the pattern and you
can continue advancing. The bounds of P.WRAP are defined through P.L, P.START, and P.END.

If wrap is enabled (P.WRAP 1) a pattern will begin at its start location and advance to the lesser index of either
its end location or the end of its pattern length

Examples:

With wrap enabled, a pattern length of 6, a start location of 2 , and an end location of 8.

39

P.WRAP 1; P.L 6; P.START 2; P.END 8

The pattern will wrap between the indexes 2 and 5.

With wrap enabled, a pattern length of 10, a start location of 3, and an end location of 6.

P.WRAP 1; P.L 10; P.START 3; P.END 6

The pattern will wrap between the indexes 3 and 6.

If wrap is disabled (P.WRAP 0) a pattern will run between its start and end locations and halt at either bound.

This applies to PN.WRAP as well, except the pattern number is the first variable and a second variable specifies
the wrap behavior (0/1).

P.I

• P.I / P.I x

get/set index position for the working pattern. all values greater than pattern length return the first step beyond
the pattern length. negative values are indexed backwards from the end of the pattern length.

Example:

With a pattern length of 6 (P.L 6), yielding an index range of 0-5:

P.I 3

moves the index of the working pattern to 3

P.I 10

moves the index of the working pattern to 6

P.I -2

moves the index of the working pattern to 4

This applies to PN.I, except the pattern number is the first variable and a second variable specifics the index.

40

Control flow

OP OP (set) (aliases) Description

IF x: ... if x is not zero execute command

ELIF x: ... if all previous IF / ELIF fail, and x is not
zero, execute command

ELSE: ... if all previous IF / ELIF fail, excute
command

L x y: ... run the command sequentially with I
values from x to y

W x: ... run the command while condition x is true

EVERY x: ... run the command every x times the
command is called

SKIP x: ... run the command every time except the
xth time.

OTHER: ... runs the command when the previous
EVERY/SKIP did not run its command.

SYNC x synchronizes all EVERY and SKIP
counters to offset x.

PROB x: ... potentially execute command with
probability x (0-100)

SCRIPT SCRIPT x $ get current script number, or execute
script x (1-8), recursion allowed

SCRIPT.POL x SCRIPT.POL x p $.POL get script x trigger polarity, or set polarity
p (1 rising edge, 2 falling, 3 both)

SCENE SCENE x get the current scene number, or load
scene x (0-31)

SCENE.G x load scene x (0-31) without loading grid
control states

KILL clears stack, clears delays, cancels
pulses, cancels slews, disables
metronome

BREAK BRK halts execution of the current script

INIT clears all state data

INIT.CV x clears all parameters on CV associated
with output x

INIT.CV.ALL clears all parameters on all CV’s

INIT.DATA clears all data held in all variables

INIT.P x clears pattern associated with pattern
number x

41

OP OP (set) (aliases) Description

INIT.P.ALL clears all patterns

INIT.SCENE loads a blank scene

INIT.SCRIPT x clear script number x

INIT.SCRIPT.ALL clear all scripts

INIT.TIME x clear time on trigger x

INIT.TR x clear all parameters on trigger associated
with TR x

INIT.TR.ALL clear all triggers

IF

• IF x: ...

If x is not zero execute command

Advanced IF / ELIF / ELSE usage

1. Intermediate statements always run

SCRIPT 1:
IF 0: 0 => do nothing
TR.P 1 => always happens
ELSE: TR.P 2 => else branch runs because of the previous IF

2. ELSE without an IF

SCRIPT 1:
ELSE: TR.P 1 => never runs, as there is no preceding IF

3. ELIF without an IF

SCRIPT 1:
ELIF 1: TR.P 1 => never runs, as there is no preceding IF

4. Independent scripts

SCRIPT 1:
IF 1: TR.P 1 => pulse output 1

SCRIPT 2:
ELSE: TR.P 2 => never runs regardless of what happens in script 1

(see example 2)

5. Dependent scripts

42

SCRIPT 1:
IF 0: TR.P 1 => do nothing
SCRIPT 2 => will pulse output 2

SCRIPT 2:
ELSE: TR.P 2 => will not pulse output 2 if called directly,

but will if called from script 1

L

• L x y: ...

Run the command sequentially with I values from x to y.

For example:

L 1 4: TR.PULSE I => pulse outputs 1, 2, 3 and 4
L 4 1: TR.PULSE I => pulse outputs 4, 3, 2 and 1

W

• W x: ...

Runs the command while the condition x is true or the loop iterations exceed 10000.

For example, to find the first iterated power of 2 greater than 100:

A 2
W LT A 100: A * A A

A will be 256.

EVERY

• EVERY x: ...

Runs the command every x times the line is executed. This is tracked on a per-line basis, so each script can
have 6 different “dividers”.

Here is a 1-script clock divider:

EVERY 2: TR.P 1
EVERY 4: TR.P 2
EVERY 8: TR.P 3
EVERY 16: TR.P 4

The numbers do not need to be evenly divisible by each other, so there is no problem with:

43

EVERY 2: TR.P 1
EVERY 3: TR.P 2

SKIP

• SKIP x: ...

This is the corollary function to EVERY, essentially behaving as its exact opposite.

OTHER

• OTHER: ...

OTHER can be used to do somthing alternately with a preceding EVERY or SKIP command.

For example, here is a script that alternates between two triggers to make a four-on-the-floor beat with hats
between the beats:

EVERY 4: TR.P 1
OTHER: TR.P 2

You could add snares on beats 2 and 4 with:

SKIP 2: TR.P 3

SYNC

• SYNC x

Causes all of the EVERY and SYNC counters to synchronize their offsets, respecting their individual divisor
values.

Negative numbers will synchronize to to the divisor value, such that SYNC -1 causes all every counters to be
1 number before their divisor, causing each EVERY to be true on its next call, and each SKIP to be false.

SCRIPT

• SCRIPT / SCRIPT x
• alias: $

Execute script x (1-8), recursion allowed.

There is a limit of 8 for the maximum number of nested calls to SCRIPT to stop infinite loops from locking up
the Teletype.

44

SCRIPT.POL

• SCRIPT.POL x / SCRIPT.POL x p
• alias: $.POL

Get or set the trigger polarity of script x, determining which trigger edges the script will fire on.

1: rising edge (default) 2: falling edge 3: either edge

SCENE

• SCENE / SCENE x

Load scene x (0-31).

Does not execute the I script. Will not execute from the I script on scene load. Will execute on subsequent
calls to the I script.

WARNING: You will lose any unsaved changes to your scene.

SCENE.G

• SCENE.G x

Load scene x (0-31) without loading grid button and fader states.

WARNING: You will lose any unsaved changes to your scene.

INIT

• INIT

WARNING: You will lose all settings when you initialize using INIT - there is NO undo!

INIT.DATA

• INIT.DATA

Clears the following variables and resets them to default values: A, B, C, D, CV slew, Drunk min/max, M, O, Q,
R, T, TR. Does not affect the CV input (IN) or the Parameter knob (PARAM) values.

45

Maths

Logical operators such as EQ, OR and LT return 1 for true, and 0 for false.

OP OP (set) (aliases) Description

ADD x y + add x and y together

SUB x y - subtract y from x

MUL x y * multiply x and y together

DIV x y / divide x by y

MOD x y % find the remainder after division of x by y

RAND x RND generate a random number between 0
and x inclusive

RRAND x y RRND generate a random number between x
and y inclusive

TOSS randomly return 0 or 1

? x y z if condition x is true return y, otherwise
return z

MIN x y return the minimum of x and y

MAX x y return the maximum of x and y

LIM x y z limit the value x to the range y to z
inclusive

WRAP x y z WRP limit the value x to the range y to z
inclusive, but with wrapping

QT x y round x to the closest multiple of y
(quantise)

AVG x y the average of x and y

EQ x y == does x equal y

NE x y != , XOR x is not equal to y

LT x y < x is less than y

GT x y > x is greater than y

LTE x y <= x is less than or equal to y

GTE x y >= x is greater than or equal to y

EZ x ! x is 0, equivalent to logical NOT

NZ x x is not 0

LSH x y << left shift x by y bits, in effect multiply x by
2 to the power of y

RSH x y >> right shift x by y bits, in effect divide x by
2 to the power of y

| x y bitwise or x

46

OP OP (set) (aliases) Description

& x y bitwise and x & y

^ x y bitwise xor x ^ y

~ x bitwise not, i.e.: inversion of x

BSET x y set bit y in value x

BGET x y get bit y in value x

BCLR x y clear bit y in value x

ABS x absolute value of x

AND x y && logical AND of x and y

OR x y || logical OR of x and y

JI x y just intonation helper, precision ratio
divider normalised to 1V

SCALE a b x y i SCL scale i from range a to b to range x to y,
i.e. i * (y - x) / (b - a)

ER f l i Euclidean rhythm, f is fill (1-32), l is
length (1-32) and i is step (any value),
returns 0 or 1

BPM x milliseconds per beat in BPM x

N x converts an equal temperament note
number to a value usable by the CV
outputs (x in the range -127 to 127)

V x converts a voltage to a value usable by
the CV outputs (x between 0 and 10)

VV x converts a voltage to a value usable by
the CV outputs (x between 0 and 1000,
100 represents 1V)

EXP x exponentiation table lookup. 0-16383
range (V 0-10)

CHAOS x get next value from chaos generator, or
set the current value

CHAOS.R x get or set the R parameter for the CHAOS
generator

CHAOS.ALG x get or set the algorithm for the CHAOS
generator. 0 = LOGISTIC, 1 = CUBIC, 2 =
HENON, 3 = CELLULAR

R generate a random number

R.MIN x set the lower end of the range from 0 –
32767

R.MAX x set the upper end of the range from 0 –
32767

47

MUL

• MUL x y
• alias: *

returns x times y, bounded to integer limits

AND

• AND x y
• alias: &&

Logical AND of x and y. Returns 1 if both x and y are greater than 0, otherwise it returns 0.

OR

• OR x y
• alias: ||

Logical OR of x and y. Returns 1 if either x or y are greater than 0, otherwise it returns 0.

ER

• ER f l i

Euclidean rhythm helper, as described by Godfried Toussaint in his 2005 paper “The Euclidean Algorithm Gen-
erates Traditional Musical Rhythms”12. From the abstract:

• f is fill (1-32) and should be less then or equal to length
• l is length (1-32)
• i is the step index, and will work with negative as well as positive numbers

If you wish to add rotation as well, use the following form:

ER f l SUB i r

where r is the number of step of forward rotation you want.

For more info, see the post on samdoshi.com3

1http://cgm.cs.mcgill.ca/~godfried/publications/banff.pdf
2Toussaint, G. T. (2005, July). The Euclidean algorithm generates traditional musical rhythms. In Proceedings of BRIDGES: Math-

ematical Connections in Art, Music and Science (pp. 47-56).
3http://samdoshi.com/post/2016/03/teletype-euclidean/

48

http://cgm.cs.mcgill.ca/~godfried/publications/banff.pdf
http://samdoshi.com/post/2016/03/teletype-euclidean/

N

• N x

The N OP converts an equal temperament note number to a value usable by the CV outputs.

Examples:

CV 1 N 60 => set CV 1 to middle C, i.e. 5V
CV 1 N RAND 24 => set CV 1 to a random note from the lowest 2 octaves

49

Metronome

An internal metronome executes the M script at a specified rate (in ms). By default the metronome is enabled
(M.ACT 1) and set to 1000ms (M 1000). The metro can be set as fast as 25ms (M 25). An additional M!
op allows for setting the metronome to experimental rates as high as 2ms (M! 2). WARNING: when using a
large number of i2c commands in the M script at metro speeds beyond the 25ms teletype stability issues can
occur.

Access the M script directly with alt-<F10> or run the script once using <F10>.

OP OP (set) (aliases) Description

M M x get/set metronome interval to x (in ms), default 1000, minimum value 25

M! M! x get/set metronome to experimental interval x (in ms), minimum value 2

M.ACT M.ACT x get/set metronome activation to x (0/1), default 1 (enabled)

M.RESET hard reset metronome count without triggering

50

Delay

The DEL delay op allow commands to be sheduled for execution after a defined interval by placing them into
a buffer which can hold up to 16 commands. Commands can be delayed by up to 16 seconds

In LIVE mode, the second icon (an upside-down U) will be lit up when there is a command in the DEL buffer.

OP OP (set) (aliases) Description

DEL x: ... Delay command by x ms

DEL.CLR Clear the delay buffer

DEL.X x delay_time:
...

Delay x commands at delay_time ms
intervals

DEL.R x delay_time:
...

Trigger the command following the colon
once immediately, and delay x - 1
commands at delay_time ms intervals

DEL

• DEL x: ...

Delay the command following the colon by x ms by placing it into a buffer. The buffer can hold up to 16
commands. If the buffer is full, additional commands will be discarded.

DEL.CLR

• DEL.CLR

Clear the delay buffer, cancelling the pending commands.

DEL.X

• DEL.X x delay_time: ...

Delay the command following the colon x times at intervals of delay_time ms by placing it into a buffer. The
buffer can hold up to 16 commands. If the buffer is full, additional commands will be discarded.

DEL.R

• DEL.R x delay_time: ...

51

Delay the command following the colon once immediately, and x - 1 times at intervals of delay_time ms
by placing it into a buffer. The buffer can hold up to 16 commands. If the buffer is full, additional commands
will be discarded.

52

Stack

These operators manage a last in, first out, stack of commands, allowing them to be memorised for later
execution at an unspecified time. The stack can hold up to 8 commands. Commands added to a full stack
will be discarded.

OP OP (set) (aliases) Description

S: ... Place a command onto the stack

S.CLR Clear all entries in the stack

S.ALL Execute all entries in the stack

S.POP Execute the most recent entry

S.L Get the length of the stack

S

• S: ...

Add the command following the colon to the top of the stack. If the stack is full, the command will be discarded.

S.CLR

• S.CLR

Clear the stack, cancelling all of the commands.

S.ALL

• S.ALL

Execute all entries in the stack (last in, first out), clearing the stack in the process.

S.POP

• S.POP

Pop the most recent command off the stack and execute it.

53

S.L

• S.L

Get the number of entries in the stack.

54

Queue

These operators manage a first in, first out, queue of values. The queue can hold up to 16 values. The length of
the queue can be dynamically changed and the contents will be preserved. There is also an averaging operator
which is useful for smoothing input values.

OP OP (set) (aliases) Description

Q Q x Modify the queue entries

Q.N Q.N x The queue length

Q.AVG Q.AVG x Return the average of the queue

Q

• Q / Q x

Gets the output value from the queue, or places x into the queue.

Q.N

• Q.N / Q.N x

Gets/sets the length of the queue.

Q.AVG

• Q.AVG / Q.AVG x

Getting the value the average of the values in the queue. Setting x sets the value of each entry in the queue to
x.

55

Seed

OP OP (set) (aliases) Description

SEED SEED x get / set the random number generator
seed for all SEED ops

RAND.SEED RAND.SEED x RAND.SD ,
R.SD

get / set the random number generator
seed for R, RRAND, and RAND ops

TOSS.SEED TOSS.SEED x TOSS.SD get / set the random number generator
seed for the TOSS op

PROB.SEED PROB.SEED x PROB.SD get / set the random number generator
seed for the PROB mod

DRUNK.SEED DRUNK.SEED x DRUNK.SD get / set the random number generator
seed for the DRUNK op

P.SEED P.SEED x P.SD get / set the random number generator
seed for the P.RND and PN.RND ops

56

Turtle

A 2-dimensional, movable index into the pattern values as displayed on the TRACKER screen.

OP OP (set) (aliases) Description

@ @ x get or set the current pattern value under
the turtle

@X @X x get the turtle X coordinate, or set it to x

@Y @Y x get the turtle Y coordinate, or set it to x

@MOVE x y move the turtle x cells in the X axis and y
cells in the Y axis

@F x1 y1 x2 y2 set the turtle’s fence to corners x1,y1 and
x2,y2

@FX1 @FX1 x get the left fence line or set it to x

@FX2 @FX2 x get the right fence line or set it to x

@FY1 @FY1 x get the top fence line or set it to x

@FY2 @FY2 x get the bottom fence line or set it to x

@SPEED @SPEED x get the speed of the turtle’s @STEP in
cells per step or set it to x

@DIR @DIR x get the direction of the turtle’s @STEP in
degrees or set it to x

@STEP move @SPEED/100 cells forward in @DIR,
triggering @SCRIPT on cell change

@BUMP @BUMP 1 get whether the turtle fence mode is
BUMP, or set it to BUMP with 1

@WRAP @WRAP 1 get whether the turtle fence mode is
WRAP, or set it to WRAP with 1

@BOUNCE @BOUNCE 1 get whether the turtle fence mode is
BOUNCE, or set it to BOUNCE with 1

@SCRIPT @SCRIPT x get which script runs when the turtle
changes cells, or set it to x

@SHOW @SHOW 0/1 get whether the turtle is displayed on the
TRACKER screen, or turn it on or off

57

Grid

Grid operators allow creating scenes that can interact with grid connected to teletype (important: grid must
be powered externally, do not connect it directly to teletype!). You can light up individual LEDs, draw shapes
and create controls (such as buttons and faders) that can be used to trigger and control scripts. You can take
advantage of grid operators even without an actual grid by using the built in Grid Visualizer.

For more information on grid integration see Advanced section and Grid Studies4.

As there are many operators let’s review some naming conventions that apply to the majority of them. All grid
ops start with G.. For control related ops this is followed by 3 letters specifying the control: G.BTN for buttons,
G.FDR for faders. To define a control you use the main ops G.BTN and G.FDR. To define multiple controls
replace the last letter with X: G.BTX, G.FDX.

All ops that initialize controls use the same list of parameters: id, coordinates, width, height, type, level, script.
When creating multiple controls there are two extra parameters: the number of columns and the number of
rows. Controls are created in the current group (set with G.GRP). To specify a different group use the group
versions of the 4 above ops - G.GBT, G.GFD, G.GBX, G.GFX and specify the desired group as the first param-
eter.

All controls share some common properties, referenced by adding a . and:

• EN: G.BTN.EN, G.FDR.EN - enables or disables a control
• V: G.BTN.V, G.FDR.V - value, 1/0 for buttons, range value for faders
• L: G.BTN.L, G.FDR.L - level (brightness level for buttons and coarse faders, max value level for fine

faders)
• X: G.BTN.X, G.FDR.X - the X coordinate
• Y: G.BTN.Y, G.FDR.Y - the Y coordinate

To get/set properties for individual controls you normally specify the control id as the first parameter: G.FDR.V
5 will return the value of fader 5. Quite often the actual id is not important, you just want to work with the latest
control pressed. As these are likely the ops to be used most often they are offered as shortcuts without a .:
G.BTNV returns the value of the last button pressed, G.FDRL 4 will set the level of the last fader pressed etc
etc.

OP OP (set) (aliases) Description

G.RST full grid reset

G.CLR clear all LEDs

G.DIM level set dim level

G.ROTATE x set grid rotation

G.KEY x y action emulate grid press

G.GRP G.GRP id get/set current group

G.GRP.EN id G.GRP.EN id x enable/disable group or check if enabled

G.GRP.RST id reset all group controls

4https://github.com/scanner-darkly/teletype/wiki/GRID-INTEGRATION

58

https://github.com/scanner-darkly/teletype/wiki/GRID-INTEGRATION

OP OP (set) (aliases) Description

G.GRP.SW id switch groups

G.GRP.SC id G.GRP.SC id script get/set group script

G.GRPI get last group

G.LED x y G.LED x y level get/set LED

G.LED.C x y clear LED

G.REC x y w h fill
border

draw rectangle

G.RCT x1 y1 x2 y2
fill border

draw rectangle

G.BTN id x y w h
type level script

initialize button

G.GBT group id x y w
h type level script

initialize button in group

G.BTX id x y w h
type level script
columns rows

initialize multiple buttons

G.GBX group id x y w
h type level script
columns rows

initialize multiple buttons in group

G.BTN.EN id G.BTN.EN id x enable/disable button or check if enabled

G.BTN.X id G.BTN.X id x get/set button x coordinate

G.BTN.Y id G.BTN.Y id y get/set button y coordinate

G.BTN.V id G.BTN.V id value get/set button value

G.BTN.L id G.BTN.L id level get/set button level

G.BTNI id of last pressed button

G.BTNX G.BTNX x get/set x of last pressed button

G.BTNY G.BTNY y get/set y of last pressed button

G.BTNV G.BTNV value get/set value of last pressed button

G.BTNL G.BTNL level get/set level of last pressed button

G.BTN.SW id switch button

G.BTN.PR id action emulate button press/release

G.GBTN.V group value set value for group buttons

G.GBTN.L group
odd_level even_level

set level for group buttons

G.GBTN.C group get count of currently pressed

G.GBTN.I group index get id of pressed button

G.GBTN.W group get button block width

G.GBTN.H group get button block height

59

OP OP (set) (aliases) Description

G.GBTN.X1 group get leftmost pressed x

G.GBTN.X2 group get rightmost pressed x

G.GBTN.Y1 group get highest pressed y

G.GBTN.Y2 group get lowest pressed y

G.FDR id x y w h
type level script

initialize fader

G.GFD grp id x y w h
type level script

initialize fader in group

G.FDX id x y w h
type level script
columns rows

initialize multiple faders

G.GFX group id x y w
h type level script
columns rows

initialize multiple faders in group

G.FDR.EN id G.FDR.EN id x enable/disable fader or check if enabled

G.FDR.X id G.FDR.X id x get/set fader x coordinate

G.FDR.Y id G.FDR.Y id y get/set fader y coordinate

G.FDR.N id G.FDR.N id value get/set fader value

G.FDR.V id G.FDR.V id value get/set scaled fader value

G.FDR.L id G.FDR.L id level get/set fader level

G.FDRI id of last pressed fader

G.FDRX G.FDRX x get/set x of last pressed fader

G.FDRY G.FDRY y get/set y of last pressed fader

G.FDRN G.FDRN value get/set value of last pressed fader

G.FDRV G.FDRV value get/set scaled value of last pressed fader

G.FDRL G.FDRL level get/set level of last pressed fader

G.FDR.PR id value emulate fader press

G.GFDR.N group value set value for group faders

G.GFDR.V group value set scaled value for group faders

G.GFDR.L group
odd_level even_level

set level for group faders

G.GFDR.RN group min
max

set range for group faders

G.RST

• G.RST

60

Full grid reset - hide all controls and reset their properties to the default values, clear all LEDs, reset the dim
level and the grid rotation.

G.CLR

• G.CLR

Clear all LEDs set with G.LED, G.REC or G.RCT.

G.DIM

• G.DIM level

Set the dim level (0..14, higher values dim more). To remove set to 0.

G.ROTATE

• G.ROTATE x

Set the grid rotation (0 - no rotation, 1 - rotate by 180 degrees).

G.KEY

• G.KEY x y action

Emulate a grid key press at the specified coordinates (0-based). Set action to 1 to emulate a press, 0 to
emulate a release. You can also emulate a button press with G.BTN.PR and a fader press with G.FDR.PR.

G.GRP

• G.GRP / G.GRP id

Get or set the current group. Grid controls created without specifying a group will be assigned to the current
group. This op doesn’t enable/disable groups - use G.GRP.EN for that. The default current group is 0. 64
groups are available.

G.GRP.EN

• G.GRP.EN id / G.GRP.EN id x

61

Enable or disable the specified group or check if it’s currently enabled. 1 means enabled, 0 means disabled.
Enabling or disabling a group enables / disables all controls assigned to that group (disabled controls are not
shown and receive no input). This allows groups to be used as pages - initialize controls in different groups,
and then simply enable one group at a time.

G.GRP.RST

• G.GRP.RST id

Reset all controls associated with the specified group. This will disable the controls and reset their properties
to the default values. This will also reset the fader scale range to 0..16383.

G.GRP.SW

• G.GRP.SW id

Switch groups. Enables the specified group, disables all others.

G.GRP.SC

• G.GRP.SC id / G.GRP.SC id script

Assign a script to the specified group, or get the currently assigned script. The script gets executed whenever
a control associated with the group receives input. It is possible to have different scripts assigned to a control
and the group it belongs to. Use 9 for Metro and 10 for Init. To unassign, set it to 0.

G.GRPI

• G.GRPI

Get the id of the last group that received input. This is useful when sharing a script between multiple groups.

G.LED

• G.LED x y / G.LED x y level

Set the LED level or get the current level at the specified coordinates. Possible level range is 0..15 (on non
varibright grids anything below 8 is ‘off’, 8 or above is ‘on’).

Grid controls get rendered first, and LEDs are rendered last. This means you can use LEDs to accentuate
certain areas of the UI. This also means that any LEDs that are set will block whatever is underneath them,
even with the level of 0. In order to completely clear an LED set its level to -3. There are two other special

62

values for brightness: -1 will dim, and -2 will brighten what’s underneath. They can be useful to highlight the
current sequence step, for instance.

G.LED.C

• G.LED.C x y

Clear the LED at the specified coordinates. This is the same as setting the brightness level to -3. To clear all
LEDs use G.CLR.

G.REC

• G.REC x y w h fill border

Draw a rectangle with the specified width and height. x and y are the coordinates of the top left corner. Coor-
dinates are 0-based, with the 0,0 point located at the top left corner of the grid. You can draw rectangles that
are partially outside of the visible area, and they will be properly cropped.

fill and border specify the brightness levels for the inner area and the one-LED-wide border respectively,
0..15 range. You can use the three special brightness levels: -1 to dim, -2 to brighten and -3 for transparency
(you could draw just a frame by setting fill to -3, for instance).

To draw lines, set the width or the height to 1. In this case only border brightness level is used.

G.RCT

• G.RCT x1 y1 x2 y2 fill border

Same as G.REC but instead of specifying the width and height you specify the coordinates of the top left corner
and the bottom right corner.

G.BTN

• G.BTN id x y w h type level script

Initializes and enables a button with the specified id. 256 buttons are available (ids are 0-based so the possible
id range is 0..255. The button will be assigned to the current group (set withG.GRP). Buttons can be reinitialized
at any point.

x and y specify the coordinates of the top left corner, and w and h specify width and height respectively. type
determines whether the button is latching (1) or momentary (0). level sets the “off” brightness level, possible
rand is -3..15 (the brightness level for pressed buttons is fixed at 13).

script specifies the script to be executed when the button is pressed or released (the latter only for momen-
tary buttons). Use 9 for Metro and 10 for Init. Use 0 if you don’t need a script assigned.

63

G.GBT

• G.GBT group id x y w h type level script

Initialize and enable a button. Same as G.BTN but you can also choose which group to assign the button too.

G.BTX

• G.BTX id x y w h type level script columns rows

Initialize and enable a block of buttons in the current group with the specified number of columns and rows .
Ids are incremented sequentially by columns and then by rows.

G.GBX

• G.GBX group id x y w h type level script columns rows

Initialize and enable a block of buttons. Same as G.BTX but you can also choose which group to assign the
buttons too.

G.BTN.EN

• G.BTN.EN id / G.BTN.EN id x

Enable (set x to 1) or disable (set x to 0) a button with the specified id, or check if it’s currently enabled.
Disabling a button hides it and stops it from receiving input but keeps all the other properties (size/location
etc) intact.

G.BTN.X

• G.BTN.X id / G.BTN.X id x

Get or set x coordinate for the specified button’s top left corner.

G.BTN.Y

• G.BTN.Y id / G.BTN.Y id y

Get or set y coordinate for the specified button’s top left corner.

64

G.BTN.V

• G.BTN.V id / G.BTN.V id value

Get or set the specified button’s value. For buttons the value of 1 means the button is pressed and 0 means it’s
not. If there is a script assigned to the button it will not be triggered if you change the value - use G.BTN.PR
for that.

Button values don’t change when a button is disabled. Button values are stored with the scene (both to flash
and to USB sticks).

G.BTN.L

• G.BTN.L id / G.BTN.L id level

Get or set the specified button’s brightness level (-3..15). Please note you can only set the level for unpressed
buttons, the level for pressed buttons is fixed at 13.

G.BTNI

• G.BTNI

Get the id of the last pressed button. This is useful when multiple buttons are assigned to the same script.

G.BTNX

• G.BTNX / G.BTNX x

Get or set x coordinate of the last pressed button’s top left corner. This is the same as G.BTN.X G.BTNI.

G.BTNY

• G.BTNY / G.BTNY y

Get or set y coordinate of the last pressed button’s top left corner. This is the same as G.BTN.Y G.BTNI.

G.BTNV

• G.BTNV / G.BTNV value

Get or set the value of the last pressed button. This is the same as G.BTN.V G.BTNI. This op is especially
useful with momentary buttons when you want to react to presses or releases only - just put IF EZ G.BTNV:
BREAK in the beginning of the assigned script (this will ignore releases, to ignore presses replace NZ with EZ).

65

G.BTNL

• G.BTNL / G.BTNL level

Get or set the brightness level of the last pressed button. This is the same as G.BTN.L G.BTNI.

G.BTN.SW

• G.BTN.SW id

Set the value of the specified button to 1 (pressed), set it to 0 (not pressed) for all other buttons within the
same group (useful for creating radio buttons).

G.BTN.PR

• G.BTN.PR id action

Emulate pressing/releasing the specified button. Set action to 1 for press, 0 for release (action is ignored
for latching buttons).

G.GBTN.V

• G.GBTN.V group value

Set the value for all buttons in the specified group.

G.GBTN.L

• G.GBTN.L group odd_level even_level

Set the brightness level (0..15) for all buttons in the specified group. You can use different values for odd and
even buttons (based on their index within the group, not their id) - this can be a good way to provide some
visual guidance.

G.GBTN.C

• G.GBTN.C group

Get the total count of all the buttons in the specified group that are currently pressed.

66

G.GBTN.I

• G.GBTN.I group index

Get the id of a currently pressed button within the specified group by its index (0-based). The index should be
between 0 and C-1 where C is the total count of all pressed buttons (you can get it using G.GBTN.C).

G.GBTN.W

• G.GBTN.W group

Get the width of the rectangle formed by pressed buttons within the specified group. This is basically the
distance between the leftmost and the rightmost pressed buttons, inclusive. This op is useful for things like
setting a loop’s length, for instance. To do so, check if there is more than one button pressed (usingG.GBTN.C)
and if there is, use G.GBTN.W to set the length.

G.GBTN.H

• G.GBTN.H group

Get the height of the rectangle formed by pressed buttons within the specified group (see G.GBTN.W for more
details).

G.GBTN.X1

• G.GBTN.X1 group

Get the X coordinate of the leftmost pressed button in the specified group. If no buttons are currently pressed
it will return -1.

G.GBTN.X2

• G.GBTN.X2 group

Get the X coordinate of the rightmost pressed button in the specified group. If no buttons are currently pressed
it will return -1.

G.GBTN.Y1

• G.GBTN.Y1 group

Get the Y coordinate of the highest pressed button in the specified group. If no buttons are currently pressed
it will return -1.

67

G.GBTN.Y2

• G.GBTN.Y2 group

Get the Y coordinate of the lowest pressed button in the specified group. If no buttons are currently pressed it
will return -1.

G.FDR

• G.FDR id x y w h type level script

Initializes and enables a fader with the specified id. 64 faders are available (ids are 0-based so the possible id
range is 0..63). The fader will be assigned to the current group (set with G.GRP). Faders can be reinitialized at
any point.

x and y specify the coordinates of the top left corner, and w and h specify width and height respectively.

type determines the fader type and orientation. Possible values are:

• 0 - coarse, horizontal bar
• 1 - coarse, vertical bar
• 2 - coarse, horizontal dot
• 3 - coarse, vertical dot
• 4 - fine, horizontal bar
• 5 - fine, vertical bar
• 6 - fine, horizontal dot
• 7 - fine, vertical dot

Coarse faders have the possible range of 0..N-1 where N is width for horizontal faders or height for vertical
faders. Pressing anywhere within the fader area sets the fader value accordingly. Fine faders allow selecting
a bigger range of values by mapping the range to the fader’s height or width and dedicating the edge buttons
for incrementing/decrementing. Fine faders employ varibrightness to reflect the current value.

level has a different meaning for coarse and fine faders. For coarse faders it selects the background bright-
ness level (similar to buttons). For fine faders this is the maximum value level (the minimum level being 0).
In order to show each value distinctly using varibright the maximum level possible is the number of available
buttons multiplied by 16 minus 1 (since range is 0-based). Remember that 2 buttons are always reserved for
increment/decrement. Using a larger number is allowed - it will be automatically adjusted to what’s possible.

script specifies the script to be executed when the fader value is changed. Use 9 for Metro and 10 for Init.
Use 0 if you don’t need a script assigned.

G.GFD

• G.GFD grp id x y w h type level script

Initialize and enable a fader. Same as G.FDR but you can also choose which group to assign the fader too.

68

G.FDX

• G.FDX id x y w h type level script columns rows

Initialize and enable a block of faders with the specified number of columns and rows in the current group. Ids
are incremented sequentially by columns and then by rows.

G.GFX

• G.GFX group id x y w h type level script columns rows

Initialize and enable a block of faders. Same as G.FDX but you can also choose which group to assign the
faders too.

G.FDR.EN

• G.FDR.EN id / G.FDR.EN id x

Enable (set x to 1) or disable (set x to 0) a fader with the specified id, or check if it’s currently enabled. Disabling
a fader hides it and stops it from receiving input but keeps all the other properties (size/location etc) intact.

G.FDR.X

• G.FDR.X id / G.FDR.X id x

Get or set x coordinate for the specified fader’s top left corner.

G.FDR.Y

• G.FDR.Y id / G.FDR.Y id y

Get or set y coordinate for the specified fader’s top left corner.

G.FDR.N

• G.FDR.N id / G.FDR.N id value

Get or set the specified fader’s value. The possible range for coarse faders is 0..N-1 where N is fader’s width
(for horizontal faders) or height (for vertical faders). For fine faders the possible range is 0..N where N is the
maximum level set when the fader was initialized (see G.FDR for more details).

Sometimes it’s more convenient to map the possible fader range to a different range (when using it to control
a CV, for instance). Use G.FDR.V for that.

69

If there is a script assigned to the fader it will not be triggered if you change the value - use G.FDR.PR for that.

Fader values don’t change when a fader is disabled. Fader values are stored with the scene (both to flash and
to USB sticks).

G.FDR.V

• G.FDR.V id / G.FDR.V id value

Get or set the specified fader’s value mapped to a range set with G.GFDR.RN. This op is very convenient for
using faders to control a known range, such as CV - simply create a fader and set a range and then assign
values directly without any additional calculations, like this: CV 1 G.FDR.V 1.

G.FDR.L

• G.FDR.L id / G.FDR.L id level

Get or set the specified fader’s brightness level (for coarse faders), or the maximum value level (for fine faders).

G.FDRI

• G.FDRI

Get the id of the last pressed fader. This is useful when multiple faders are assigned to the same script.

G.FDRX

• G.FDRX / G.FDRX x

Get or set x coordinate of the last pressed fader’s top left corner. This is the same as G.FDR.X G.FDRI.

G.FDRY

• G.FDRY / G.FDRY y

Get or set y coordinate of the last pressed fader’s top left corner. This is the same as G.BTN.Y G.BTNI.

G.FDRN

• G.FDRN / G.FDRN value

Get or set the value of the last pressed fader. This is the same as G.FDR.N G.FDRI. See G.FDR.N for more
details.

70

G.FDRV

• G.FDRV / G.FDRV value

Get or set the scaled value of the last pressed fader. This is the same as G.FDR.V G.FDRI. See G.FDR.V
for more details.

G.FDRL

• G.FDRL / G.FDRL level

Get or set the brightness level (for coarse faders), or the maximum value level (for fine faders) of the last
pressed fader. This is the same as G.FDR.L G.BTNI. For more details on levels see G.FDR.

G.FDR.PR

• G.FDR.PR id value

Emulate pressing the specified fader. Fader value will be set to the specified value, and if there is a script
assigned it will be executed.

G.GFDR.N

• G.GFDR.N group value

Set the value for all faders in the specified group. This can be useful for resetting all faders in a group. See
G.FDR.N for more details.

G.GFDR.V

• G.GFDR.V group value

Set the scaled value for all faders in the specified group. This can be useful for resetting all faders in a group.
See G.FDR.V for more details.

G.GFDR.L

• G.GFDR.L group odd_level even_level

Set the brightness level (0..15) for all faders in the specified group. You can use different values for odd and
even faders (based on their index within the group, not their id) - this can be a good way to provide some visual
guidance.

71

G.GFDR.RN

• G.GFDR.RN group min max

Set the range to be used for V fader values (G.FDR.V, G.FDRV, G.GFDR.V). While the .N ops provide the
actual fader value sometimes it’s more convenient to map it to a different range so it can be used directly for
something like a CV without having to scale it each time.

An example: let’s say you create a coarse fader with the width of 8 which will be used to control a CV output
where the voltage must be in the 2V..5V range. Using G.FDR.N you would need to do this: CV 1 SCL 0 7
V 2 V 5 G.FDR.N 0. Instead you can set the range for scaling once: G.GFDR.RN 0 V 2 V 5 (assuming
the fader is in group 0) and then simply do CV 1 G.FDR.V 0.

The range is shared by all faders within the same group. If you need to use a different range use a different
group when initializing a fader.

The default range is 0..16383. G.RST and G.GRP.RST reset ranges to the default value.

72

Ansible

OP OP (set) (aliases) Description

ANS.G.LED x y get grid LED buffer at position x, y

ANS.G x y ANS.G x y z get/set grid key on/off state (z) at
position x, y

ANS.G.P x y simulate grid key press at position (x, y)

ANS.A.LED n x read arc LED buffer for ring n, LED x
clockwise from north

ANS.A ANS.A n d send arc encoder event for ring n, delta d

ANS.APP ANS.APP x get/set active app

KR.PRE KR.PRE x return current preset / load preset x

KR.PERIOD KR.PERIOD x get/set internal clock period

KR.PAT KR.PAT x get/set current pattern

KR.SCALE KR.SCALE x get/set current scale

KR.POS x y KR.POS x y z get/set position z for track z, parameter y

KR.L.ST x y KR.L.ST x y z get loop start for track x, parameter y /
set to z

KR.L.LEN x y KR.L.LEN x y z get length of track x, parameter y / set to
z

KR.RES x y reset position to loop start for track x,
parameter y

KR.CV x get the current CV value for channel x

KR.MUTE x KR.MUTE x y get/set mute state for channel x (1 =
muted, 0 = unmuted)

KR.TMUTE x toggle mute state for channel x

KR.CLK x advance the clock for channel x (channel
must have teletype clocking enabled)

KR.PG KR.PG x get/set the active page

KR.CUE KR.CUE x get/set the cued pattern

KR.DIR KR.DIR x get/set the step direction

ME.PRE ME.PRE x return current preset / load preset x

ME.SCALE ME.SCALE x get/set current scale

ME.PERIOD ME.PERIOD x get/set internal clock period

ME.STOP x stop channel x (0 = all)

ME.RES x reset channel x (0 = all), also used as
“start”

ME.CV x get the current CV value for channel x

73

OP OP (set) (aliases) Description

LV.PRE LV.PRE x return current preset / load preset x

LV.RES x reset, 0 for soft reset (on next ext. clock),
1 for hard reset

LV.POS LV.POS x get/set current position

LV.L.ST LV.L.ST x get/set loop start

LV.L.LEN LV.L.LEN x get/set loop length

LV.L.DIR LV.L.DIR x get/set loop direction

LV.CV x get the current CV value for channel x

CY.PRE CY.PRE x return current preset / load preset x

CY.RES x reset channel x (0 = all)

CY.POS x CY.POS x y get / set position of channel x (x = 0 to
set all), position between 0-255

CY.REV x reverse channel x (0 = all)

CY.CV x get the current CV value for channel x

MID.SLEW t set pitch slew time in ms (applies to all
allocation styles except FIXED)

MID.SHIFT o shift pitch CV by standard Teletype pitch
value (e.g. N 6, V -1, etc)

ARP.HLD h 0 disables key hold mode, other values
enable

ARP.STY y set base arp style [0-7]

ARP.GT v g set voice gate length [0-127],
scaled/synced to course divisions of
voice clock

ARP.SLEW v t set voice slew time in ms

ARP.RPT v n s set voice pattern repeat, n times [0-8],
shifted by s semitones [-24, 24]

ARP.DIV v d set voice clock divisor (euclidean length),
range [1-32]

ARP.FIL v f set voice euclidean fill, use 1 for straight
clock division, range [1-32]

ARP.ROT v r set voice euclidean rotation, range [-32,
32]

ARP.ER v f d r set all euclidean rhythm

ARP.RES v reset voice clock/pattern on next base
clock tick

ARP.SHIFT v o shift voice cv by standard tt pitch value
(e.g. N 6, V -1, etc)

74

ANS.APP

• ANS.APP / ANS.APP x

Get or change the app that is active on Ansible. Numbering:

• 0 = levels
• 1 = cycles
• 2 = kria
• 3 = meadowphysics
• 4 = midi standard
• 5 = midi arp
• 6 = teletype expander

KR.POS

• KR.POS x y / KR.POS x y z

Set position to z for track x, parameter y.

A value of 0 for x means all tracks.

A value of 0 for y means all parameters

Parameters:

• 0 = all
• 1 = trigger
• 2 = note
• 3 = octave
• 4 = length

KR.PG

• KR.PG / KR.PG x

Get or change the current parameter page. Numbering:

• 0 = trigger
• 1 = ratchet
• 2 = note
• 3 = alt note
• 4 = octave
• 5 = glide
• 6 = duration
• 7 = TBD
• 8 = scale

75

• 9 = pattern

KR.CUE

• KR.CUE / KR.CUE x

Get or change the cued pattern. Numbered from 0.

KR.DIR

• KR.DIR / KR.DIR x

Get or change the step direction. Numbered from 0.

76

White Whale

OP OP (set) (aliases) Description

WW.PRESET x Recall preset (0-7)

WW.POS x Cut to position (0-15)

WW.SYNC x Cut to position (0-15) and hard-sync the clock (if clocked internally)

WW.START x Set the loop start position (0-15)

WW.END x Set the loop end position (0-15)

WW.PMODE x Set the loop play mode (0-5)

WW.PATTERN x Change pattern (0-15)

WW.QPATTERN x Change pattern (0-15) after current pattern ends

WW.MUTE1 x Mute trigger 1 (0 = on, 1 = mute)

WW.MUTE2 x Mute trigger 2 (0 = on, 1 = mute)

WW.MUTE3 x Mute trigger 3 (0 = on, 1 = mute)

WW.MUTE4 x Mute trigger 4 (0 = on, 1 = mute)

WW.MUTEA x Mute CV A (0 = on, 1 = mute)

WW.MUTEB x Mute CV B (0 = on, 1 = mute)

WW.PRESET

• WW.PRESET x

Set White Whale to preset x (0-7). This takes effect immediately. The current playback position is not changed.

WW.POS

• WW.POS x

Cut immediately to position (0-15) in the currently playing pattern.

WW.SYNC

• WW.SYNC x

Cut to position (0-15) in the currently playing pattern. If White Whale is being clocked internaly, this also hard-
syncs the clock.

77

WW.START

• WW.START x

Set the loop start position (0-15). This does not impact the current playback position. If the playback position
is outside of the defined loop it will continue to step until it enters the loop. If the start position is after the end
position, the loop will wrap around the ends of the grid.

WW.END

• WW.END x

Set the loop end position (0-15). This does not impact the current playback position. If the playback position
is outside of the defined loop it will continue to step until it enters the loop. If the end position is before the
end position, the loop will wrap around the ends of the grid.

WW.PMODE

• WW.PMODE x

Set the loop play mode. The available modes are: 0 - forward, 1 - reverse, 2 - drunk, 3 - random, 4 - pingpong,
5 - pingpong with repeated end points.

WW.PATTERN

• WW.PATTERN x

Change pattern. This does not impact the current playback position.

WW.QPATTERN

• WW.QPATTERN x

Change pattern (0-15) after current pattern ends

WW.MUTE1

• WW.MUTE1 x

Mute trigger 1 (0 = on, 1 = mute).

78

WW.MUTE2

• WW.MUTE2 x

Mute trigger 2 (0 = on, 1 = mute).

WW.MUTE3

• WW.MUTE3 x

Mute trigger 3 (0 = on, 1 = mute).

WW.MUTE4

• WW.MUTE4 x

Mute trigger 4 (0 = on, 1 = mute).

WW.MUTEA

• WW.MUTEA x

Mute CV A (0 = on, 1 = mute).

WW.MUTEB

• WW.MUTEB x

Mute CV B (0 = on, 1 = mute).

79

Meadowphysics

For use on the original Meadowphysics module with version 2 firmware. Reference the Ansible ops for using
Meadowphysics on the Ansible module.

OP OP (set) (aliases) Description

MP.PRESET x set Meadowphysics to preset x (indexed from 0)

MP.RESET x reset countdown for channel x (0 = all, 1-8 = individual channels)

MP.STOP x reset channel x (0 = all, 1-8 = individual channels)

80

Earthsea

OP OP (set) (aliases) Description

ES.PRESET x Recall preset x (0-7)

ES.MODE x Set pattern clock mode. (0=normal, 1=II clock)

ES.CLOCK x If II clocked, next pattern event

ES.RESET x Reset pattern to start (and start playing)

ES.PATTERN x Select playing pattern (0-15)

ES.TRANS x Transpose the current pattern

ES.STOP x Stop pattern playback.

ES.TRIPLE x Recall triple shape (1-4)

ES.MAGIC x Magic shape (1= halfspeed, 2=doublespeed, 3=linearize)

ES.PRESET

• ES.PRESET x

Recall the preset in location x. This will stop the currently playing pattern.

ES.MODE

• ES.MODE x

Sets the pattern clock mode. Setting x to 0 sets Earthsea to use it’s internal clock. Setting x to 1 clocks
Earthsea via the ES.CLOCK command.

ES.CLOCK

• ES.CLOCK x

If Earthsea is II clocked (see ES.MODE), and x is non-zero, advance to the next pattern event.

ES.RESET

• ES.RESET x

If x is non-zero, reset the position in the current pattern to the start and start playing.

81

ES.PATTERN

• ES.PATTERN x

Select pattern (0-15) from the current preset.

ES.TRANS

• ES.TRANS x

Apply a transposition relative to the current ‘root’ position. Integer divisions of x shift the root note up or down
a row, x modulo 5 will shift the position left or right up to 4 notes.

ES.STOP

• ES.STOP x

If x is non-zero, stop pattern playback, or stop record if currently recording.

ES.TRIPLE

• ES.TRIPLE x

Recall triple shape (1-4).

ES.MAGIC

• ES.MAGIC x

Apply one of the magic shapes, (1= halfspeed, 2=doublespeed, 3=linearize). Other shapes are not currently
available via II ops.

82

Orca

Remote commands for Orca (alternative WW firmware). For detailed info and tips on usage please refer to the
Orca manual5.

OP OP (set) (aliases) Description

OR.CLK x Advance track x (1-4)

OR.RST x Reset track x (1-4)

OR.GRST x Global reset (x can be any value)

OR.TRK x Choose track x (1-4) to be used by
OR.DIV, OR.PHASE, OR.WGT or OR.MUTE

OR.DIV x Set divisor for selected track to x (1-16)

OR.PHASE x Set phase for selected track to x (0-16)

OR.WGT x Set weight for selected track to x (1-8)

OR.MUTE x Mute trigger selected by OR.TRK (0 = on,
1 = mute)

OR.SCALE x Select scale x (1-16)

OR.BANK x Select preset bank x (1-8)

OR.PRESET x Select preset x (1-8)

OR.RELOAD x Reload preset or bank (0 - current preset,
1 - current bank, 2 - all banks)

OR.ROTS x Rotate scales by x (1-15)

OR.ROTW x Rotate weights by x (1-3)

OR.CVA x Select tracks for CV A where x is a binary
number representing the tracks

OR.CVB x Select tracks for CV B where x is a binary
number representing the tracks

OR.CLK

• OR.CLK x

Gives you the ability to clock individual tracks. The master clock will still advance all 4 tracks.

OR.SCALE

• OR.SCALE x
5https://github.com/scanner-darkly/monome-mods/wiki/Orca---manual#teletype-integration

83

https://github.com/scanner-darkly/monome-mods/wiki/Orca---manual#teletype-integration

Value of 1-16 will select scale for both CV A and CV B. To select individual scales append their numbers, for
instance, 105 will select scale 1 for CV A and scale 5 for CV B, and 1005 will select scale 10 for CV A and
scale 5 for CV B.

OR.RELOAD

• OR.RELOAD x

Abandons any unsaved changes and reloads selected presets/banks from flash. Could be useful in I script.

OR.ROTS

• OR.ROTS x

Rotates scales up. To rotate them down set x to 16 minus the amount.

OR.ROTW

• OR.ROTW x

Rotates weights up. To rotate them down set x to 4 minus the amount.

OR.CVA

• OR.CVA x

Convert a binary number representing selected tracks (so 1001 will select tracks 1 and 4, for instance) and
set x to that.

OR.CVB

• OR.CVB x

Convert a binary number representing selected tracks (so 1001 will select tracks 1 and 4, for instance) and
set x to that.

84

Just Friends

More extensively covered in the Just Friends Documentation6.

OP OP (set) (aliases) Description

JF.TR x y Simulate a TRIGGER input. x is channel
(0 = all) and y is state (0 or 1)

JF.RMODE x Set the RUN state of Just Friends when
no physical jack is present. (0 = run off,
non-zero = run on)

JF.RUN x Send a ‘voltage’ to the RUN input.
Requires JF.RMODE 1 to have been
executed, or a physical cable in JF’s input.
Thus Just Friend’s RUN modes are
accessible without needing a physical
cable & control voltage to set the RUN
parameter. use JF.RUN V x to set to x
volts. The expected range is V -5 to V 5

JF.SHIFT x Shifts the transposition of Just Friends,
regardless of speed setting. Shifting by V
1 doubles the frequency in sound, or
doubles the rate in shape. x = pitch, use N
x for semitones, or V y for octaves.

JF.VTR x y Like JF.TR with added volume control.
Velocity is scaled with volts, so try V 5
for an output trigger of 5 volts. Channels
remember their latest velocity setting and
apply it regardless of TRIGGER origin
(digital or physical). x = channel, 0 sets
all channels. y = velocity, amplitude of
output in volts. eg JF.VTR 1 V 4.

JF.TUNE x y z Adjust the tuning ratios used by the
INTONE control. x = channel, y =
numerator (set the multiplier for the
tuning ratio), z = denominator (set the
divisor for the tuning ratio).

JF.MODE x Set the current choice of standard
functionality, or Just Type alternate
modes. You’ll likely want to put JF.MODE
x in your Teletype INIT scripts. x =
nonzero activates alternative modes. 0
restores normal.

6https://www.whimsicalraps.com/pages/just-type

85

https://www.whimsicalraps.com/pages/just-type

OP OP (set) (aliases) Description

JF.VOX x y z Create a note at the specified channel, of
the defined pitch & velocity. All channels
can be set simultaneously with a chan
value of 0. x = channel, y = pitch relative
to C3, z = velocity (like JF.VTR).

JF.NOTE x y Polyphonically allocated note sequencing.
Works as JF.VOX with chan selected
automatically. Free voices will be taken
first. If all voices are busy, will steal from
the voice which has been active the
longest. x = pitch relative to C3, y =
velocity.

JF.GOD x Redefines C3 to align with the ‘God’ note.
x = 0 sets A to 440, x = 1 sets A to 432.

JF.TICK x Sets the underlying timebase of the
Geode. x = clock. 0 resets the timebase
to the start of measure. 1 to 48 shall be
sent repetitively. The value representing
ticks per measure. 49 to 255 sets
beats-per-minute and resets the
timebase to start of measure.

JF.QT x When non-zero, all events are queued &
delayed until the next quantize event
occurs. Using values that don’t align with
the division of rhythmic streams will
cause irregular patterns to unfold. Set to
0 to deactivate quantization. x = division,
0 deactivates quantization, 1 to 32 sets
the subdivision & activates quantization.

86

TELEXi

The TELEXi (or TXi) is an input expander that adds 4 IN jacks and 4 PARAM knobs to the Teletype. There are
jumpers on the back so you can hook more than one TXi to your Teletype simultaneously.

Inputs added to the system by the TELEX modules are addressed sequentially: 1-4 are on your first module of
any type, 5-8 are on the second, 9-12 on the third, and so on. A few of the commands reference the module by
its unit number – but those are rare.

OP OP (set) (aliases) Description

TI.PARAM x TI.PRM reads the value of PARAM knob x; default
return range is from 0 to 16383; return
range can be altered by the
TI.PARAM.MAP command

TI.PARAM.QT x TI.PRM.QT return the quantized value for PARAM
knob x using the scale set by
TI.PARAM.SCALE; default return range
is from 0 to 16383

TI.PARAM.N x TI.PRM.N return the quantized note number for
PARAM knob x using the scale set by
TI.PARAM.SCALE

TI.PARAM.SCALE x TI.PRM.SCALEselect scale # y for PARAM knob x; scales
listed in full description

TI.PARAM.MAP x y z TI.PRM.MAP maps the PARAM values for input x
across the range y - z (defaults 0-16383)

TI.IN x reads the value of IN jack x; default return
range is from -16384 to 16383 -
representing -10V to +10V; return range
can be altered by the TI.IN.MAP
command

TI.IN.QT x return the quantized value for IN jack x
using the scale set by TI.IN.SCALE;
default return range is from -16384 to
16383 - representing -10V to +10V

TI.IN.N x return the quantized note number for IN
jack x using the scale set by
TI.IN.SCALE

TI.IN.SCALE x select scale # y for IN jack x; scales
listed in full description

TI.IN.MAP x y z maps the IN values for input jack x across
the range y - z (default range is -16384 to
16383 - representing -10V to +10V)

87

OP OP (set) (aliases) Description

TI.PARAM.INIT x TI.PRM.INITinitializes PARAM knob x back to the
default boot settings and behaviors;
neutralizes mapping (but not calibration)

TI.IN.INIT x initializes IN jack x back to the default
boot settings and behaviors; neutralizes
mapping (but not calibration)

TI.INIT d initializes all of the PARAM and IN inputs
for device number d (1-8)

TI.PARAM.CALIB x y TI.PRM.CALIBcalibrates the scaling for PARAM knob x;
y of 0 sets the bottom bound; y of 1 sets
the top bound

TI.IN.CALIB x y calibrates the scaling for IN jack x; y of
-1 sets the -10V point; y of 0 sets the 0V
point; y of 1 sets the +10V point

TI.STORE d stores the calibration data for TXi number
d (1-8) to its internal flash memory

TI.RESET d resets the calibration data for TXi number
d (1-8) to its factory defaults (no
calibration)

TI.PARAM.SCALE

• TI.PARAM.SCALE x
• alias: TI.PRM.SCALE

Quantization Scales

0. Equal Temperament [DEFAULT]
1. 12-tone Pythagorean scale
2. Vallotti & Young scale (Vallotti version) also known as Tartini-Vallotti (1754)
3. Andreas Werckmeister’s temperament III (the most famous one, 1681)
4. Wendy Carlos’ Alpha scale with perfect fifth divided in nine
5. Wendy Carlos’ Beta scale with perfect fifth divided by eleven
6. Wendy Carlos’ Gamma scale with third divided by eleven or fifth by twenty
7. Carlos Harmonic & Ben Johnston’s scale of ‘Blues’ from Suite f.micr.piano (1977) & David Beardsley’s

scale of ‘Science Friction’
8. Carlos Super Just
9. Kurzweil “Empirical Arabic”

10. Kurzweil “Just with natural b7th”, is Sauveur Just with 7/4
11. Kurzweil “Empirical Bali/Java Harmonic Pelog”

88

12. Kurzweil “Empirical Bali/Java Slendro, Siam 7”
13. Kurzweil “Empirical Tibetian Ceremonial”
14. Harry Partch’s 43-tone pure scale
15. Partch’s Indian Chromatic, Exposition of Monophony, 1933.
16. Partch Greek scales from “Two Studies on Ancient Greek Scales” on black/white

TI.PARAM.MAP

• TI.PARAM.MAP x y z
• alias: TI.PRM.MAP

If you would like to have a PARAM knob values over a specific range, you can offload the processing for this
to the TXo by mapping the range of the potentiometer using the MAP command. It works a lot like the MAP
operator, but does the heavy lifting on the TXi, saving you space in your code and cycles on your processor.

For instance, let’s have the first knob return a range from 0 to 100.

TI.PARAM.MAP 1 0 100

You can reset the mapping by either calling the map command with the default range or by using the INIT
command (TO.PARAM.INIT 1).

TI.IN.SCALE

• TI.IN.SCALE x

Quantization Scales

0. Equal Temperament [DEFAULT]
1. 12-tone Pythagorean scale
2. Vallotti & Young scale (Vallotti version) also known as Tartini-Vallotti (1754)
3. Andreas Werckmeister’s temperament III (the most famous one, 1681)
4. Wendy Carlos’ Alpha scale with perfect fifth divided in nine
5. Wendy Carlos’ Beta scale with perfect fifth divided by eleven
6. Wendy Carlos’ Gamma scale with third divided by eleven or fifth by twenty
7. Carlos Harmonic & Ben Johnston’s scale of ‘Blues’ from Suite f.micr.piano (1977) & David Beardsley’s

scale of ‘Science Friction’
8. Carlos Super Just
9. Kurzweil “Empirical Arabic”

10. Kurzweil “Just with natural b7th”, is Sauveur Just with 7/4
11. Kurzweil “Empirical Bali/Java Harmonic Pelog”
12. Kurzweil “Empirical Bali/Java Slendro, Siam 7”
13. Kurzweil “Empirical Tibetian Ceremonial”
14. Harry Partch’s 43-tone pure scale

89

15. Partch’s Indian Chromatic, Exposition of Monophony, 1933.
16. Partch Greek scales from “Two Studies on Ancient Greek Scales” on black/white

TI.PARAM.CALIB

• TI.PARAM.CALIB x y
• alias: TI.PRM.CALIB

You can calibrate your PARAM knob by using this command. The steps for full calibration are as follows:

1. Turn the PARAM knob x all the way to the left
2. Send the command ‘TI.PARAM.CALIBRATE x 0’
3. Turn the PARAM knob x all the way to the right
4. Send the command ‘TI.PARAM.CALIBRATE x 1’

Don’t forget to call the TI.STORE command to save your calibration between sessions.

TI.IN.CALIB

• TI.IN.CALIB x y

You can calibrate your IN jack to external voltages by using this command. The steps for full calibration are
as follows:

1. Send a -10V signal to the input x
2. Send the command ‘TI.IN.CALIBRATE x -1’
3. Send a 0V signal to the input x
4. Send the command ‘TI.IN.CALIBRATE x 0’
5. Send a 10V signal to the input x
6. Send the command ‘TI.IN.CALIBRATE x 1’

Don’t forget to call the TI.STORE command to save your calibration between sessions.

90

TELEXo

The TELEXo (or TXo) is an output expander that adds an additional 4 Trigger and 4 CV jacks to the Teletype.
There are jumpers on the back so you can hook more than one TXo to your Teletype simultaneously.

Outputs added to the system by the TELEX modules are addressed sequentially: 1-4 are on your first module
of any type, 5-8 are on the second, 9-12 on the third, and so on. A few of the commands reference the module
by its unit number – but those are rare.

Unlike the Teletype’s equivalent operators, the TXo does not have get commands for its functions. This was
intentional as these commands eat up processor and bus-space. While they may be added in the future, as of
now you cannot poll the TXo for the current state of its various operators.

OP OP (set) (aliases) Description

TO.TR x y sets the TR value for output x to y (0/1)

TO.TR.TOG x toggles the TR value for output x

TO.TR.PULSE x TO.TR.P pulses the TR value for output x for the
duration set by TO.TR.TIME/S/M

TO.TR.PULSE.DIV x y TO.TR.P.DIVsets the clock division factor for TR
output x to y

TO.TR.PULSE.MUTE x y TO.TR.P.MUTEmutes or un-mutes TR output x; y is 1
(mute) or 0 (un-mute)

TO.TR.TIME x y sets the time for TR.PULSE on output n;
y in milliseconds

TO.TR.TIME.S x y sets the time for TR.PULSE on output n;
y in seconds

TO.TR.TIME.M x y sets the time for TR.PULSE on output n;
y in minutes

TO.TR.WIDTH x y sets the time for TR.PULSE on output n
based on the width of its current
metronomic value; y in percentage
(0-100)

TO.TR.POL x y sets the polarity for TR output n

TO.TR.M.ACT x y sets the active status for the independent
metronome for output x to y (0/1);
default 0 (disabled)

TO.TR.M x y sets the independent metronome interval
for output x to y in milliseconds; default
1000

TO.TR.M.S x y sets the independent metronome interval
for output x to y in seconds; default 1

TO.TR.M.M x y sets the independent metronome interval
for output x to y in minutes

91

OP OP (set) (aliases) Description

TO.TR.M.BPM x y sets the independent metronome interval
for output x to y in Beats Per Minute

TO.TR.M.COUNT x y sets the number of repeats before
deactivating for output x to y; default 0
(infinity)

TO.TR.M.MUL x y multiplies the M rate on TR output x by y;
y defaults to 1 - no multiplication

TO.TR.M.SYNC x synchronizes the PULSE for metronome
on TR output number x

TO.M.ACT d y sets the active status for the 4
independent metronomes on device d
(1-8) to y (0/1); default 0 (disabled)

TO.M d y sets the 4 independent metronome
intervals for device d (1-8) to y in
milliseconds; default 1000

TO.M.S d y sets the 4 independent metronome
intervals for device d to y in seconds;
default 1

TO.M.M d y sets the 4 independent metronome
intervals for device d to y in minutes

TO.M.BPM d y sets the 4 independent metronome
intervals for device d to y in Beats Per
Minute

TO.M.COUNT d y sets the number of repeats before
deactivating for the 4 metronomes on
device d to y; default 0 (infinity)

TO.M.SYNC d synchronizes the 4 metronomes for
device number d (1-8)

TO.CV x CV target output x; y values are bipolar
(-16384 to +16383) and map to -10 to +10

TO.CV.SLEW x y set the slew amount for output x; y in
milliseconds

TO.CV.SLEW.S x y set the slew amount for output x; y in
seconds

TO.CV.SLEW.M x y set the slew amount for output x; y in
minutes

TO.CV.SET x y set the CV for output x (ignoring SLEW); y
values are bipolar (-16384 to +16383) and
map to -10 to +10

TO.CV.OFF x y set the CV offset for output x; y values
are added at the final stage

92

OP OP (set) (aliases) Description

TO.CV.QT x y CV target output x; y is quantized to
output’s current CV.SCALE

TO.CV.QT.SET x y set the CV for output x (ignoring SLEW); y
is quantized to output’s current
CV.SCALE

TO.CV.N x y target the CV to note y for output x; y is
indexed in the output’s current CV.SCALE

TO.CV.N.SET x y set the CV to note y for output x; y is
indexed in the output’s current CV.SCALE
(ignoring SLEW)

TO.CV.SCALE x y select scale # y for CV output x; scales
listed in full description

TO.CV.LOG x y translates the output for CV output x to
logarithmic mode y; y defaults to 0 (off);
mode 1 is for 0-16384 (0V-10V), mode 2
is for 0-8192 (0V-5V), mode 3 is for
0-4096 (0V-2.5V), etc.

TO.CV.CALIB x Locks the current offset (CV.OFF) as a
calibration offset and saves it to persist
between power cycles for output x.

TO.CV.RESET x Clears the calibration offset for output x.

TO.OSC x y targets oscillation for CV output x to y
with the portamento rate determined by
the TO.OSC.SLEW value; y is 1v/oct
translated from the standard range
(1-16384); a value of 0 disables
oscillation; CV amplitude is used as the
peak for oscillation and needs to be > 0
for it to be perceivable

TO.OSC.SET x y set oscillation for CV output x to y
(ignores CV.OSC.SLEW); y is 1v/oct
translated from the standard range
(1-16384); a value of 0 disables
oscillation; CV amplitude is used as the
peak for oscillation and needs to be > 0
for it to be perceivable

93

OP OP (set) (aliases) Description

TO.OSC.QT x y targets oscillation for CV output x to y
with the portamento rate determined by
the TO.OSC.SLEW value; y is 1v/oct
translated from the standard range
(1-16384) and quantized to current
OSC.SCALE; a value of 0 disables
oscillation; CV amplitude is used as the
peak for oscillation and needs to be > 0
for it to be perceivable

TO.OSC.QT.SET x y set oscillation for CV output x to y
(ignores CV.OSC.SLEW); y is 1v/oct
translated from the standard range
(1-16384) and quantized to current
OSC.SCALE; a value of 0 disables
oscillation; CV amplitude is used as the
peak for oscillation and needs to be > 0
for it to be perceivable

TO.OSC.N x y targets oscillation for CV output x to note
y with the portamento rate determined by
the TO.OSC.SLEW value; see
quantization scale reference for y; CV
amplitude is used as the peak for
oscillation and needs to be > 0 for it to
be perceivable

TO.OSC.N.SET x y sets oscillation for CV output x to note y
(ignores CV.OSC.SLEW); see
quantization scale reference for y; CV
amplitude is used as the peak for
oscillation and needs to be > 0 for it to
be perceivable

TO.OSC.FQ x y targets oscillation for CV output x to
frequency y with the portamento rate
determined by the TO.OSC.SLEW value;
y is in Hz; a value of 0 disables
oscillation; CV amplitude is used as the
peak for oscillation and needs to be > 0
for it to be perceivable

TO.OSC.FQ.SET x y sets oscillation for CV output x to
frequency y (ignores CV.OSC.SLEW); y is
in Hz; a value of 0 disables oscillation; CV
amplitude is used as the peak for
oscillation and needs to be > 0 for it to
be perceivable

94

OP OP (set) (aliases) Description

TO.OSC.LFO x y targets oscillation for CV output x to LFO
frequency y with the portamento rate
determined by the TO.OSC.SLEW value;
y is in mHz (millihertz: 10^-3 Hz); a value
of 0 disables oscillation; CV amplitude is
used as the peak for oscillation and
needs to be > 0 for it to be perceivable

TO.OSC.LFO.SET x y sets oscillation for CV output x to LFO
frequency y (ignores CV.OSC.SLEW); y is
in mHz (millihertz: 10^-3 Hz); a value of 0
disables oscillation; CV amplitude is used
as the peak for oscillation and needs to
be > 0 for it to be perceivable

TO.OSC.CYC x y targets the oscillator cycle length to y for
CV output x with the portamento rate
determined by the TO.OSC.SLEW value;
y is in milliseconds

TO.OSC.CYC.SET x y sets the oscillator cycle length to y for CV
output x (ignores CV.OSC.SLEW); y is in
milliseconds

TO.OSC.CYC.S x y targets the oscillator cycle length to y for
CV output x with the portamento rate
determined by the TO.OSC.SLEW value;
y is in seconds

TO.OSC.CYC.S.SET x y sets the oscillator cycle length to y for CV
output x (ignores CV.OSC.SLEW); y is in
seconds

TO.OSC.CYC.M x y targets the oscillator cycle length to y for
CV output x with the portamento rate
determined by the TO.OSC.SLEW value;
y is in minutes

TO.OSC.CYC.M.SET x y sets the oscillator cycle length to y for CV
output x (ignores CV.OSC.SLEW); y is in
minutes

TO.OSC.SCALE x y select scale # y for CV output x; scales
listed in full description

TO.OSC.WAVE x y set the waveform for output x to y; y
values range 0-4500. There are 45
different waveforms, values translate to
sine (0), triangle (100), saw (200), pulse
(300) all the way to random/noise (4500);
oscillator shape between values is a
blend of the pure waveforms

95

OP OP (set) (aliases) Description

TO.OSC.RECT x y rectifies the polarity of the oscillator for
output x to y; range for y is -2 to 2;
default is 0 (no rectification); 1 & -1 are
partial rectification - omitting all values
on the other side of the sign; 2 & -2 are
full rectification - inverting values from
the other pole

TO.OSC.WIDTH x y sets the width of the pulse wave on
output x to y; y is a percentage of total
width (0 to 100); only affects waveform
3000

TO.OSC.SYNC x resets the phase of the oscillator on CV
output x (relative to TO.OSC.PHASE)

TO.OSC.PHASE x y sets the phase offset of the oscillator on
CV output x to y (0 to 16383); y is the
range of one cycle

TO.OSC.SLEW x y sets the frequency slew time
(portamento) for the oscillator on CV
output x to y; y in milliseconds

TO.OSC.SLEW.S x y sets the frequency slew time
(portamento) for the oscillator on CV
output x to y; y in seconds

TO.OSC.SLEW.M x y sets the frequency slew time
(portamento) for the oscillator on CV
output x to y; y in minutes

TO.OSC.CTR x y centers the oscillation on CV output x to
y; y values are bipolar (-16384 to +16383)
and map to -10 to +10

TO.ENV.ACT x y activates/deactivates the AD envelope
generator for the CV output x; y turns the
envelope generator off (0 - default) or on
(1); CV amplitude is used as the peak for
the envelope and needs to be > 0 for the
envelope to be perceivable

TO.ENV x y This parameter essentially allows output
x to act as a gate between the 0 and 1
state. Changing this value from 0 to 1
causes the envelope to trigger the attack
phase and hold at the peak CV value;
changing this value from 1 to 0 causes
the decay stage of the envelope to be
triggered.

96

OP OP (set) (aliases) Description

TO.ENV.TRIG x triggers the envelope at CV output x to
cycle; CV amplitude is used as the peak
for the envelope and needs to be > 0 for
the envelope to be perceivable

TO.ENV.ATT x y set the envelope attack time to y for CV
output x; y in milliseconds (default 12
ms)

TO.ENV.ATT.S x y set the envelope attack time to y for CV
output x; y in seconds

TO.ENV.ATT.M x y set the envelope attack time to y for CV
output x; y in minutes

TO.ENV.DEC x y set the envelope decay time to y for CV
output x; y in milliseconds (default 250
ms)

TO.ENV.DEC.S x y set the envelope decay time to y for CV
output x; y in seconds

TO.ENV.DEC.M x y set the envelope decay time to y for CV
output x; y in minutes

TO.ENV.EOR x n fires a PULSE at the End of Rise to the
unit-local trigger output ‘n’ for the
envelope on CV output x; n refers to
trigger output 1-4 on the same TXo as CV
output ‘y’

TO.ENV.EOC x n fires a PULSE at the End of Cycle to the
unit-local trigger output ‘n’ for the
envelope on CV output x; n refers to
trigger output 1-4 on the same TXo as CV
output ‘y’

TO.ENV.LOOP x y causes the envelope on CV output x to
loop for y times; a y of 0 will cause the
envelope to loop infinitely; setting y to 1
(default) disables looping and (if currently
looping) will cause it to finish its current
cycle and cease

TO.TR.INIT x initializes TR output x back to the default
boot settings and behaviors; neutralizes
metronomes, dividers, pulse counters,
etc.

TO.CV.INIT x initializes CV output x back to the default
boot settings and behaviors; neutralizes
offsets, slews, envelopes, oscillation, etc.

TO.INIT d initializes all of the TR and CV outputs for
device number d (1-8)

97

OP OP (set) (aliases) Description

TO.KILL d cancels all TR pulses and CV slews for
device number d (1-8)

TO.TR.PULSE.DIV

• TO.TR.PULSE.DIV x y
• alias: TO.TR.P.DIV

The pulse divider will output one trigger pulse every y pulse commands. For example, setting the DIV factor
to 2 like this:

TO.TR.P.DIV 1 2

Will cause every other TO.TR.P 1 command to emit a pulse.

Reset it to one (TO.TR.P.DIV 1 1) or initialize the output (TO.TR.INIT 1) to return to the default behavior.

TO.TR.WIDTH

• TO.TR.WIDTH x y

The actual time value for the trigger pulse when set by the WIDTH command is relative to the current value for
TO.TR.M. Changes to TO.TR.M will change the duration of TR.PULSE when using the WIDTH mode to set its
value. Values for y are set in percentage (0-100).

For example:

TO.TR.M 1 1000
TO.TR.WIDTH 1 50

The length of a TR.PULSE is now 500ms.

TO.TR.M 1 500

The length of a TR.PULSE is now 250ms. Note that you don’t need to use the width command again as it
automatically tracks the value for TO.TR.M.

TO.TR.M.ACT

• TO.TR.M.ACT x y

Each TR output has its own independent metronome that will execute a TR.PULSE at a specified interval. The
ACT command enables (1) or disables (0) the metronome.

98

TO.TR.M.COUNT

• TO.TR.M.COUNT x y

This allows for setting a limit to the number of times TO.TR.M will PULSE when active before automatically
disabling itself. For example, let’s set it to pulse 5 times with 500ms between pulses:

TO.TR.M 1 500
TO.TR.M.COUNT 1 5

Now, each time we activate it, the metronome will pulse 5 times - each a half-second apart.

TO.TR.M.ACT 1 1

PULSE … PULSE … PULSE … PULSE … PULSE.

The metronome is now disabled after pulsing five times. If you call ACT again, it will emit five more pulses.

To reset, either set your COUNT to zero (TO.TR.M.COUNT 1 0) or call init on the output (TO.TR.INIT 1 1).

TO.TR.M.MUL

• TO.TR.M.MUL x y

The following example will cause 2 against 3 patterns to pulse out of TO.TR outputs 3 and 4.

TO.TR.M.MUL 3 2
TO.TR.M.MUL 4 3
L 3 4: TO.TR.M.ACT I 1

TO.M.SYNC

• TO.M.SYNC d

This command causes the TXo at device d to synchronize all of its independent metronomes to the moment
it receives the command. Each will then continue to pulse at its own independent M rate.

TO.CV.SCALE

• TO.CV.SCALE x y

Quantization Scales

0. Equal Temperament [DEFAULT]
1. 12-tone Pythagorean scale
2. Vallotti & Young scale (Vallotti version) also known as Tartini-Vallotti (1754)

99

3. Andreas Werckmeister’s temperament III (the most famous one, 1681)
4. Wendy Carlos’ Alpha scale with perfect fifth divided in nine
5. Wendy Carlos’ Beta scale with perfect fifth divided by eleven
6. Wendy Carlos’ Gamma scale with third divided by eleven or fifth by twenty
7. Carlos Harmonic & Ben Johnston’s scale of ‘Blues’ from Suite f.micr.piano (1977) & David Beardsley’s

scale of ‘Science Friction’
8. Carlos Super Just
9. Kurzweil “Empirical Arabic”

10. Kurzweil “Just with natural b7th”, is Sauveur Just with 7/4
11. Kurzweil “Empirical Bali/Java Harmonic Pelog”
12. Kurzweil “Empirical Bali/Java Slendro, Siam 7”
13. Kurzweil “Empirical Tibetian Ceremonial”
14. Harry Partch’s 43-tone pure scale
15. Partch’s Indian Chromatic, Exposition of Monophony, 1933.
16. Partch Greek scales from “Two Studies on Ancient Greek Scales” on black/white

TO.CV.LOG

• TO.CV.LOG x y

The following example creates an envelope that ramps to 5V over a logarithmic curve:

TO.CV.SET 1 V 5
TO.CV.LOG 1 2
TO.ENV.ATT 1 500
TO.ENV.DEC.S 1 2
TO.ENV.ACT 1 1

When triggered (TO.ENV.TRIG 1), the envelope will rise to 5V over a half a second and then decay back to
zero over two seconds. The curve used is 2, which covers 0V-5V.

If a curve is too small for the range being covered, values above the range will be limited to the range’s ceiling.
In the above example, voltages above 5V will all return as 5V.

TO.CV.CALIB

• TO.CV.CALIB x

To calibrate your TXo outputs, follow these steps. Before you start, let your expander warm up for a few min-
utes. It won’t take long - but you want to make sure that it is calibrated at a more representative temperature.

Then, first adjust your offset (CV.OFF) until the output is at zero volts (0). For example:

CV.OFF 1 8

Once that output measures at zero volts, you want to lock it in as the calibration by calling the following oper-
ator:

100

CV.CALIB 1

You will find that the offset is now zero, but the output is at the value that you targeted during your prior
adjustment. To reset to normal (and forget this calibration offset), use the TO.CV.RESET command.

TO.OSC

• TO.OSC x y

Setting an OSC frequency greater than zero for a CV output will start that output oscillating. It will swing its
voltage between to the current CV value and its polar opposite. For example:

TO.CV 1 V 5
TO.OSC 1 N 69

This will emit the audio-rate note A (at 440Hz) swinging from ‘+5V’ to ‘-5V’. The CV value acts as an amplitude
control. For example:

TO.CV.SLEW.M 1 1
TO.CV 1 V 10

This will cause the oscillations to gradually increase in amplitude from 5V to 10V over a period of one minute.

IMPORANT: if you do not set a CV value, the oscillator will not emit a signal.

If you want to go back to regular CV behavior, you need to set the oscillation frequency to zero. E.g. TO.OSC
1 0. You can also initialize the CV output with TO.CV.INIT 1, which resets all of its settings back to start-up
default.

TO.OSC.SCALE

• TO.OSC.SCALE x y

Quantization Scales

0. Equal Temperament [DEFAULT]
1. 12-tone Pythagorean scale
2. Vallotti & Young scale (Vallotti version) also known as Tartini-Vallotti (1754)
3. Andreas Werckmeister’s temperament III (the most famous one, 1681)
4. Wendy Carlos’ Alpha scale with perfect fifth divided in nine
5. Wendy Carlos’ Beta scale with perfect fifth divided by eleven
6. Wendy Carlos’ Gamma scale with third divided by eleven or fifth by twenty
7. Carlos Harmonic & Ben Johnston’s scale of ‘Blues’ from Suite f.micr.piano (1977) & David Beardsley’s

scale of ‘Science Friction’
8. Carlos Super Just
9. Kurzweil “Empirical Arabic”

101

10. Kurzweil “Just with natural b7th”, is Sauveur Just with 7/4
11. Kurzweil “Empirical Bali/Java Harmonic Pelog”
12. Kurzweil “Empirical Bali/Java Slendro, Siam 7”
13. Kurzweil “Empirical Tibetian Ceremonial”
14. Harry Partch’s 43-tone pure scale
15. Partch’s Indian Chromatic, Exposition of Monophony, 1933.
16. Partch Greek scales from “Two Studies on Ancient Greek Scales” on black/white

TO.OSC.RECT

• TO.OSC.RECT x y

The rectification command performs a couple of levels of rectification based on how you have it set. The
following values for y work as follows:

• y = 2: “full-positive” - inverts negative values, making them positive
• y = 1: “half-positive” - omits all negative values (values below zero are set to zero)
• y = 0: no rectification (default)
• y = -1: “half-negative” - omits all positive values (values above zero are set to zero)
• y = -2: “full-negative” - inverts positive values, making them negative

TO.OSC.SLEW

• TO.OSC.SLEW x y

This parameter acts as a frequency slew for the targeted CV output. It allows you to gradually slide from one
frequency to another, creating a portamento like effect. It is also great for smoothing transitions between
different LFO rates on the oscillator. For example:

TO.CV 1 V 5
TO.OSC.SLEW 1 30000
TO.OSC.LFO.SET 1 1000
TO.OSC.LFO 1 100

This will start an LFO on CV 1 with a rate of 1000mHz. Then, over the next 30 seconds, it will gradually
decrease in rate to 100mHz.

TO.OSC.CTR

• TO.OSC.CTR x y

For example, to create a sine wave that is centered at 2.5V and swings up to +5V and down to 0V, you would
do this:

102

TO.CV 1 VV 250
TO.OSC.CTR 1 VV 250
TO.OSC.LFO 1 500

TO.ENV.ACT

• TO.ENV.ACT x y

This setting activates (1) or deactivates (0) the envelope generator on CV output y. The envelope generator is
dependent on the current voltage setting for the output. Upon activation, the targeted output will go to zero.
Then, when triggered (TO.ENV.TRIG), it will ramp the voltage from zero to the currently set peak voltage
(TO.CV) over the attack time (TO.ENV.ATT) and then decay back to zero over the decay time (TO.ENV.DEC).
For example:

TO.CV.SET 1 V 8
TO.ENV.ACT 1 1
TO.ENV.ATT.S 1 1
TO.ENV.DEC.S 1 30

This will initialize the CV 1 output to have an envelope that will ramp to +8V over one second and decay back
to zero over thirty seconds. To trigger the envelope, you need to send the trigger command TO.ENV.TRIG 1.
Envelopes currently re-trigger from the start of the cycle.

To return your CV output to normal function, either deactivate the envelope (TO.ENV.ACT 1 0) or reinitialize
the output (TO.CV.INIT 1).

TO.ENV.EOR

• TO.ENV.EOR x n

The most important thing to know with this operator is that you can only cause the EOR trigger to fire on the
same device as the TXo with the envelope. For this command, the outputs are numbered LOCALLY to the unit
with the envelope.

For example, if you have an envelope running on your second TXo, you can only send the EOR pulse to the four
outputs on that device:

TO.ENV.EOR 5 1

This will cause the first output on TXo #2 (TO.TR 5) to pulse after the envelope’s attack segment.

TO.ENV.EOC

• TO.ENV.EOC x n

103

The most important thing to know with this operator is that you can only cause the EOC trigger to fire on the
same device as the TXo with the envelope. For this command, the outputs are numbered LOCALLY to the unit
with the envelope.

For example, if you have an envelope running on your second TXo, you can only send the EOC pulse to the four
outputs on that device:

TO.ENV.EOC 5 1

This will cause the first output on TXo #2 (TO.TR 5) to pulse after the envelope’s decay segment.

104

ER-301

The Orthogonal Devices ER-301 Sound Computer is a voltage-controllable canvas for digital signal processing
algorithms available from Orthogonal Devices. It can communicate with the Teletype to send up to 100 triggers
and 100 CV values per device. Up to three devices are software-selectable and correlate to outputs up to 300.

OP OP (set) (aliases) Description

SC.TR x y Set trigger output for the ER-301 virtual output x to y (0-1)

SC.TR.POL x y Set polarity of trigger for the ER-301 virtual output x to y (0-1)

SC.TR.TIME x y Set the pulse time for the ER-301 virtual trigger x to y in ms

SC.TR.TOG x Flip the state for the ER-301 virtual trigger output x

SC.TR.PULSE x SC.TR.P Pulse the ER-301 virtual trigger output x

SC.CV x y CV target value for the ER-301 virtual output x to value y

SC.CV.OFF x y CV offset added to the ER-301 virtual output x

SC.CV.SET x Set CV value for the ER-301 virtual output x

SC.CV.SLEW x y Set the CV slew time for the ER-301 virtual output x in ms

105

16n

The 16n Faderbank is an open-source controller that can be polled by the Teletype to read the positions of its
16 sliders.

OP OP (set) (aliases) Description

FADER x FB reads the value of the FADER slider x;
default return range is from 0 to 16383

106

W/

More extensively covered in the W/ Documentation7.

OP OP (set) (aliases) Description

WS.PLAY x Set playback state and direction. 0 stops
playback. 1 sets forward motion, while
-1 plays in reverse

WS.REC x Set recording mode. 0 is playback only. 1
sets overdub mode for additive recording.
-1 sets overwrite mode to replace the
tape with your input

WS.CUE x Go to a cuepoint relative to the playhead
position. 0 retriggers the current location.
1 jumps to the next cue forward. -1
jumps to the previous cue in the reverse.
These actions are relative to playback
direction such that 0 always retriggers
the most recently passed location

WS.LOOP x Set the loop state on/off. 0 is off. Any
other value turns loop on

7https://www.whimsicalraps.com/pages/w-type

107

https://www.whimsicalraps.com/pages/w-type

Matrixarchate

The SSSR Labs SM010 Matrixarchate is a 16x8 IO Sequenceable Matrix Signal Router.

OP OP (set) (aliases) Description

MA.SELECT x select the default matrixarchate module,
default 1

MA.STEP advance program sequencer

MA.RESET reset program sequencer

MA.PGM pgm select the current program (1-based)

MA.ON x y connect row x and column y in the
current program (rows/columns are
0-based)

MA.PON pgm x y connect row x and column y in program
pgm

MA.OFF x y disconnect row x and column y in the
current program

MA.POFF x y pgm connect row x and column y in program
pgm

MA.SET x y state set the connection at row x and column y
to state (1 - on, 0 - off)

MA.PSET pgm x y
state

set the connection at row x and column y
in program pgm to state (1 - on, 0 - off)

MA.COL col MA.COL col value get or set column col (as a 16 bit
unsigned value where each bit represents
a connection)

MA.PCOL pgm col MA.PCOL pgm col
value

get or set column col in program pgm

MA.ROW row MA.ROW row value get or set row row

MA.PROW pgm row MA.PROW pgm row
value

get or set row row in program pgm

MA.CLR clear all connections

MA.PCLR pgm clear all connections in program pgm

108

6. Advanced

Teletype terminology

Here is a picture to help understand the naming of the various parts of a Teletype command:

Figure 6.1: Teletype command terminology

COMMAND The entire command, e.g. IF X: Y 1; Z 2;.

PRE The (optional) part before the PRE SEP, e.g. IF X.

POST The part after the PRE SEP, e.g. Y 1; Z 2.

SUB A sub command (only allowed in the POST), e.g. Y 1, or Z 2.

PRE SEP A colon, only one is allowed.

SUB SEP A semi-colon, that separates sub commands (if used), only allowed in the POST.

NUM A number between −32768 and 32767.

OP An operator, e.g. X, TR.PULSE

MOD A modifier, e.g. IF, or L.

109

Sub commands

Sub commands allow you to run multiple commands on a single line by utilising a semi-colon to separate each
command, for example the following script:

X 0
Y 1
Z 2

Can be rewritten using sub commands as:

X 0; Y 1; Z 2

On their own sub commands allow for an increased command density on the Teletype. However when com-
bined with PRE statements, certain operations become a lot easier.

Firstly, sub commands cannot be used before a MOD or in the PRE itself. For example, the following is not
allowed:

X 1; IF X: TR.PULSE 1

We can use them in the POST though, particularly with an IF, for example:

IF X: CV 1 N 60; TR.P 1
IF Y: TR.P 1; TR.P 2; TR.P 3

Sub commands can also be used with L.

Aliases

In general, aliases are a simple concept to understand. Certain OPs have been given shorted names to save
space and the amount of typing, for example:

TR.PULSE 1

Can be replaced with:

TR.P 1

Where confusion may arise is with the symbolic aliases that have been given to some of the maths OPs. For
instance + is given as an alias for ADD and it must be used as a direct replacement:

X ADD 1 1
X + 1 1

The key to understanding this is that the Teletype uses prefix notation1 always, even when using mathematical
symbols.

The following example (using infix notation) will not work:

1Also know as Polish notation.

110

X 1 + 1

Aliases are entirely optional, most OPs do not have aliases. Consult the OP tables and documentation to find
them.

Avoiding non-determinism

Although happy accidents in the modular world are one of it’s many joys, when writing computer programs
they can be incredibly frustrating. Here are some small tips to help keep things predictable (when you want
them to be):

1. Don’t use variables unless you need to.

This is not to say that variables are not useful, rather it’s the opposite and they are extremely powerful.
But it can be hard to keep a track of what each variable is used for and on which script it is used. Rather,
try to save using variables for when you do want non-deterministic (i.e. variable) behaviour.

2. Consider using I as a temporary variable.

If you do find yourself needing a variable, particularly one that is used to continue a calculation on
another line, consider using the variable I. Unlike the other variables, I is overwritten whenever L is
used, and as such, is implicitly transient in nature. One should never need to worry about modifying the
value of I and causing another script to malfunction, as no script should ever assume the value of I.

3. Use PN versions of OPs.

MostPOPs are now available asPN versions that ignore the value ofP.I. (e.g. PN.START forP.START).
Unless you explicitly require the non-determinism of P versions, stick to the PN versions (space allow-
ing).

4. Avoid using A, B, C and D to refer to the trigger outputs, instead use the numerical values directly.

As A-D are variables, they may no longer contain the values 1-4, and while this was the recommend
way to name triggers, it is no longer consider ideal. Newer versions of the Teletype hardware have
replaced the labels on the trigger outputs, with the numbers 1 to 4.

Grid integration

Grid integration can be described very simply: it allows you to use grid with teletype. However, there is more
to it than just that. You can create custom grid interfaces that can be tailored individually for each scene.
Since it’s done with scripts you can dynamically change these interfaces at any point - you could even create
a dynamic interface that reacts to the scene itself or incoming triggers or control voltages.

You can simply use grid as an LED display to visualize your scene. Or make it into an earthsea style keyboard.
You can create sequencers, or control surfaces to control other sequencers. The grid operators simplify build-
ing very complex interfaces, while something simple like a bank of faders can be done with just two lines of
scripts.

111

Grid integration consists of 3 main features: grid operators, Grid Visualizer, and Grid Control mode. Grid op-
erators allow you to draw on grid or create grid controls, such as buttons and faders, that can trigger scripts
when pressed. As with any other operators you can execute them in Live screen or use them in any of your
scripts.

Grid Visualizer provides a virtual grid within the Teletype itself:

Figure 6.2: Grid Visualizer

It can be very useful while developing a script as you don’t have to switch between the grid and the keyboard
as often. To turn it on navigate to Live screen and press Alt-G (press again to switch to Full View / turn it
off). You can also emulate button presses, which means it can even be used as an alternative to grid if you
don’t have one, especially in full mode - try it with one of the many grid scenes2 already developed. For more
information on how to use it please refer to the Grid Visualizer documentation3.

Grid Control Mode is a built in grid interface that allows you to use grid to trigger and mute scripts, edit variables
and tracker values, save and load scenes, and more. It’s available in addition to whatever grid interface you
develop - simply press the front panel button while the grid is attached. It can serve as a simple way to use
grid to control any scene even without using grid ops, but it can also be very helpful when used together with
a scripted grid interface. For more information and diagrams please refer to the Grid Control documentation4,

If you do want to try and build your own grid interfaces the Grid Studies5 is the best place to start.

2https://github.com/scanner-darkly/teletype/wiki/CODE-EXCHANGE
3https://github.com/scanner-darkly/teletype/wiki/GRID-VISUALIZER
4https://github.com/scanner-darkly/teletype/wiki/GRID-CONTROL-MODE
5https://github.com/scanner-darkly/teletype/wiki/GRID-INTEGRATION

112

https://github.com/scanner-darkly/teletype/wiki/CODE-EXCHANGE
https://github.com/scanner-darkly/teletype/wiki/GRID-VISUALIZER
https://github.com/scanner-darkly/teletype/wiki/GRID-CONTROL-MODE
https://github.com/scanner-darkly/teletype/wiki/GRID-INTEGRATION

A. Alphabetical list of OPs and MODs

OP OP (set) (aliases) Description

& x y bitwise and x & y

? x y z if condition x is true return y, otherwise
return z

@ @ x get or set the current pattern value under
the turtle

@BOUNCE @BOUNCE 1 get whether the turtle fence mode is
BOUNCE, or set it to BOUNCE with 1

@BUMP @BUMP 1 get whether the turtle fence mode is
BUMP, or set it to BUMP with 1

@DIR @DIR x get the direction of the turtle’s @STEP in
degrees or set it to x

@F x1 y1 x2 y2 set the turtle’s fence to corners x1,y1 and
x2,y2

@FX1 @FX1 x get the left fence line or set it to x

@FX2 @FX2 x get the right fence line or set it to x

@FY1 @FY1 x get the top fence line or set it to x

@FY2 @FY2 x get the bottom fence line or set it to x

@MOVE x y move the turtle x cells in the X axis and y
cells in the Y axis

@SCRIPT @SCRIPT x get which script runs when the turtle
changes cells, or set it to x

@SHOW @SHOW 0/1 get whether the turtle is displayed on the
TRACKER screen, or turn it on or off

@SPEED @SPEED x get the speed of the turtle’s @STEP in
cells per step or set it to x

@STEP move @SPEED/100 cells forward in @DIR,
triggering @SCRIPT on cell change

@WRAP @WRAP 1 get whether the turtle fence mode is
WRAP, or set it to WRAP with 1

@X @X x get the turtle X coordinate, or set it to x

@Y @Y x get the turtle Y coordinate, or set it to x

A A x get / set the variable A, default 1

ABS x absolute value of x

ADD x y + add x and y together

113

OP OP (set) (aliases) Description

AND x y && logical AND of x and y

ANS.A ANS.A n d send arc encoder event for ring n, delta d

ANS.A.LED n x read arc LED buffer for ring n, LED x
clockwise from north

ANS.APP ANS.APP x get/set active app

ANS.G x y ANS.G x y z get/set grid key on/off state (z) at
position x, y

ANS.G.LED x y get grid LED buffer at position x, y

ANS.G.P x y simulate grid key press at position (x, y)

ARP.DIV v d set voice clock divisor (euclidean length),
range [1-32]

ARP.ER v f d r set all euclidean rhythm

ARP.FIL v f set voice euclidean fill, use 1 for straight
clock division, range [1-32]

ARP.GT v g set voice gate length [0-127],
scaled/synced to course divisions of
voice clock

ARP.HLD h 0 disables key hold mode, other values
enable

ARP.RES v reset voice clock/pattern on next base
clock tick

ARP.ROT v r set voice euclidean rotation, range [-32,
32]

ARP.RPT v n s set voice pattern repeat, n times [0-8],
shifted by s semitones [-24, 24]

ARP.SHIFT v o shift voice cv by standard tt pitch value
(e.g. N 6, V -1, etc)

ARP.SLEW v t set voice slew time in ms

ARP.STY y set base arp style [0-7]

AVG x y the average of x and y

B B x get / set the variable B, default 2

BCLR x y clear bit y in value x

BGET x y get bit y in value x

BPM x milliseconds per beat in BPM x

BREAK BRK halts execution of the current script

BSET x y set bit y in value x

C C x get / set the variable C, default 3

CHAOS x get next value from chaos generator, or
set the current value

114

OP OP (set) (aliases) Description

CHAOS.ALG x get or set the algorithm for the CHAOS
generator. 0 = LOGISTIC, 1 = CUBIC, 2 =
HENON, 3 = CELLULAR

CHAOS.R x get or set the R parameter for the CHAOS
generator

CV x CV x y CV target value

CV.OFF x CV.OFF x y CV offset added to output

CV.SET x Set CV value

CV.SLEW x CV.SLEW x y Get/set the CV slew time in ms

CY.CV x get the current CV value for channel x

CY.POS x CY.POS x y get / set position of channel x (x = 0 to
set all), position between 0-255

CY.PRE CY.PRE x return current preset / load preset x

CY.RES x reset channel x (0 = all)

CY.REV x reverse channel x (0 = all)

D D x get / set the variable D, default 4

DEL x: ... Delay command by x ms

DEL.CLR Clear the delay buffer

DEL.R x delay_time:
...

Trigger the command following the colon
once immediately, and delay x - 1
commands at delay_time ms intervals

DEL.X x delay_time:
...

Delay x commands at delay_time ms
intervals

DEVICE.FLIP Flip the screen/inputs/outputs

DIV x y / divide x by y

DRUNK DRUNK x changes by -1, 0, or 1 upon each read
saving its state, setting will give it a new
value for the next read

DRUNK.MAX DRUNK.MAX x set the upper bound for DRUNK, default
255

DRUNK.MIN DRUNK.MIN x set the lower bound for DRUNK, default 0

DRUNK.SEED DRUNK.SEED x DRUNK.SD get / set the random number generator
seed for the DRUNK op

DRUNK.WRAP DRUNK.WRAP x should DRUNK wrap around when it
reaches it’s bounds, default 0

ELIF x: ... if all previous IF / ELIF fail, and x is not
zero, execute command

ELSE: ... if all previous IF / ELIF fail, excute
command

115

OP OP (set) (aliases) Description

EQ x y == does x equal y

ER f l i Euclidean rhythm, f is fill (1-32), l is
length (1-32) and i is step (any value),
returns 0 or 1

ES.CLOCK x If II clocked, next pattern event

ES.MAGIC x Magic shape (1= halfspeed,
2=doublespeed, 3=linearize)

ES.MODE x Set pattern clock mode. (0=normal, 1=II
clock)

ES.PATTERN x Select playing pattern (0-15)

ES.PRESET x Recall preset x (0-7)

ES.RESET x Reset pattern to start (and start playing)

ES.STOP x Stop pattern playback.

ES.TRANS x Transpose the current pattern

ES.TRIPLE x Recall triple shape (1-4)

EVERY x: ... run the command every x times the
command is called

EXP x exponentiation table lookup. 0-16383
range (V 0-10)

EZ x ! x is 0, equivalent to logical NOT

FADER x FB reads the value of the FADER slider x;
default return range is from 0 to 16383

FLIP FLIP x returns inverted state (0 or 1) on each
read (also settable)

G.BTN id x y w h
type level script

initialize button

G.BTN.EN id G.BTN.EN id x enable/disable button or check if enabled

G.BTN.L id G.BTN.L id level get/set button level

G.BTN.PR id action emulate button press/release

G.BTN.SW id switch button

G.BTN.V id G.BTN.V id value get/set button value

G.BTN.X id G.BTN.X id x get/set button x coordinate

G.BTN.Y id G.BTN.Y id y get/set button y coordinate

G.BTNI id of last pressed button

G.BTNL G.BTNL level get/set level of last pressed button

G.BTNV G.BTNV value get/set value of last pressed button

G.BTNX G.BTNX x get/set x of last pressed button

G.BTNY G.BTNY y get/set y of last pressed button

116

OP OP (set) (aliases) Description

G.BTX id x y w h
type level script
columns rows

initialize multiple buttons

G.CLR clear all LEDs

G.DIM level set dim level

G.FDR id x y w h
type level script

initialize fader

G.FDR.EN id G.FDR.EN id x enable/disable fader or check if enabled

G.FDR.L id G.FDR.L id level get/set fader level

G.FDR.N id G.FDR.N id value get/set fader value

G.FDR.PR id value emulate fader press

G.FDR.V id G.FDR.V id value get/set scaled fader value

G.FDR.X id G.FDR.X id x get/set fader x coordinate

G.FDR.Y id G.FDR.Y id y get/set fader y coordinate

G.FDRI id of last pressed fader

G.FDRL G.FDRL level get/set level of last pressed fader

G.FDRN G.FDRN value get/set value of last pressed fader

G.FDRV G.FDRV value get/set scaled value of last pressed fader

G.FDRX G.FDRX x get/set x of last pressed fader

G.FDRY G.FDRY y get/set y of last pressed fader

G.FDX id x y w h
type level script
columns rows

initialize multiple faders

G.GBT group id x y w
h type level script

initialize button in group

G.GBTN.C group get count of currently pressed

G.GBTN.H group get button block height

G.GBTN.I group index get id of pressed button

G.GBTN.L group
odd_level even_level

set level for group buttons

G.GBTN.V group value set value for group buttons

G.GBTN.W group get button block width

G.GBTN.X1 group get leftmost pressed x

G.GBTN.X2 group get rightmost pressed x

G.GBTN.Y1 group get highest pressed y

G.GBTN.Y2 group get lowest pressed y

117

OP OP (set) (aliases) Description

G.GBX group id x y w
h type level script
columns rows

initialize multiple buttons in group

G.GFD grp id x y w h
type level script

initialize fader in group

G.GFDR.L group
odd_level even_level

set level for group faders

G.GFDR.N group value set value for group faders

G.GFDR.RN group min
max

set range for group faders

G.GFDR.V group value set scaled value for group faders

G.GFX group id x y w
h type level script
columns rows

initialize multiple faders in group

G.GRP G.GRP id get/set current group

G.GRP.EN id G.GRP.EN id x enable/disable group or check if enabled

G.GRP.RST id reset all group controls

G.GRP.SC id G.GRP.SC id script get/set group script

G.GRP.SW id switch groups

G.GRPI get last group

G.KEY x y action emulate grid press

G.LED x y G.LED x y level get/set LED

G.LED.C x y clear LED

G.RCT x1 y1 x2 y2
fill border

draw rectangle

G.REC x y w h fill
border

draw rectangle

G.ROTATE x set grid rotation

G.RST full grid reset

GT x y > x is greater than y

GTE x y >= x is greater than or equal to y

I I x get / set the variable I

IF x: ... if x is not zero execute command

IN Get the value of IN jack (0-16383)

IN.CAL.MAX Reads the input CV and assigns the
voltage to the max point

IN.CAL.MIN Reads the input CV and assigns the
voltage to the zero point

118

OP OP (set) (aliases) Description

IN.CAL.RESET Resets the input CV calibration

IN.SCALE min max Set static scaling of the IN CV to
between min and max.

INIT clears all state data

INIT.CV x clears all parameters on CV associated
with output x

INIT.CV.ALL clears all parameters on all CV’s

INIT.DATA clears all data held in all variables

INIT.P x clears pattern associated with pattern
number x

INIT.P.ALL clears all patterns

INIT.SCENE loads a blank scene

INIT.SCRIPT x clear script number x

INIT.SCRIPT.ALL clear all scripts

INIT.TIME x clear time on trigger x

INIT.TR x clear all parameters on trigger associated
with TR x

INIT.TR.ALL clear all triggers

J J x get / set the variable J

JF.GOD x Redefines C3 to align with the ‘God’ note.
x = 0 sets A to 440, x = 1 sets A to 432.

JF.MODE x Set the current choice of standard
functionality, or Just Type alternate
modes. You’ll likely want to put JF.MODE
x in your Teletype INIT scripts. x =
nonzero activates alternative modes. 0
restores normal.

JF.NOTE x y Polyphonically allocated note sequencing.
Works as JF.VOX with chan selected
automatically. Free voices will be taken
first. If all voices are busy, will steal from
the voice which has been active the
longest. x = pitch relative to C3, y =
velocity.

119

OP OP (set) (aliases) Description

JF.QT x When non-zero, all events are queued &
delayed until the next quantize event
occurs. Using values that don’t align with
the division of rhythmic streams will
cause irregular patterns to unfold. Set to
0 to deactivate quantization. x = division,
0 deactivates quantization, 1 to 32 sets
the subdivision & activates quantization.

JF.RMODE x Set the RUN state of Just Friends when
no physical jack is present. (0 = run off,
non-zero = run on)

JF.RUN x Send a ‘voltage’ to the RUN input.
Requires JF.RMODE 1 to have been
executed, or a physical cable in JF’s input.
Thus Just Friend’s RUN modes are
accessible without needing a physical
cable & control voltage to set the RUN
parameter. use JF.RUN V x to set to x
volts. The expected range is V -5 to V 5

JF.SHIFT x Shifts the transposition of Just Friends,
regardless of speed setting. Shifting by V
1 doubles the frequency in sound, or
doubles the rate in shape. x = pitch, use N
x for semitones, or V y for octaves.

JF.TICK x Sets the underlying timebase of the
Geode. x = clock. 0 resets the timebase
to the start of measure. 1 to 48 shall be
sent repetitively. The value representing
ticks per measure. 49 to 255 sets
beats-per-minute and resets the
timebase to start of measure.

JF.TR x y Simulate a TRIGGER input. x is channel
(0 = all) and y is state (0 or 1)

JF.TUNE x y z Adjust the tuning ratios used by the
INTONE control. x = channel, y =
numerator (set the multiplier for the
tuning ratio), z = denominator (set the
divisor for the tuning ratio).

JF.VOX x y z Create a note at the specified channel, of
the defined pitch & velocity. All channels
can be set simultaneously with a chan
value of 0. x = channel, y = pitch relative
to C3, z = velocity (like JF.VTR).

120

OP OP (set) (aliases) Description

JF.VTR x y Like JF.TR with added volume control.
Velocity is scaled with volts, so try V 5
for an output trigger of 5 volts. Channels
remember their latest velocity setting and
apply it regardless of TRIGGER origin
(digital or physical). x = channel, 0 sets
all channels. y = velocity, amplitude of
output in volts. eg JF.VTR 1 V 4.

JI x y just intonation helper, precision ratio
divider normalised to 1V

K K x get / set the variable K

KILL clears stack, clears delays, cancels
pulses, cancels slews, disables
metronome

KR.CLK x advance the clock for channel x (channel
must have teletype clocking enabled)

KR.CUE KR.CUE x get/set the cued pattern

KR.CV x get the current CV value for channel x

KR.DIR KR.DIR x get/set the step direction

KR.L.LEN x y KR.L.LEN x y z get length of track x, parameter y / set to
z

KR.L.ST x y KR.L.ST x y z get loop start for track x, parameter y /
set to z

KR.MUTE x KR.MUTE x y get/set mute state for channel x (1 =
muted, 0 = unmuted)

KR.PAT KR.PAT x get/set current pattern

KR.PERIOD KR.PERIOD x get/set internal clock period

KR.PG KR.PG x get/set the active page

KR.POS x y KR.POS x y z get/set position z for track z, parameter y

KR.PRE KR.PRE x return current preset / load preset x

KR.RES x y reset position to loop start for track x,
parameter y

KR.SCALE KR.SCALE x get/set current scale

KR.TMUTE x toggle mute state for channel x

L x y: ... run the command sequentially with I
values from x to y

LAST x get value in milliseconds since last script
run time

LIM x y z limit the value x to the range y to z
inclusive

121

OP OP (set) (aliases) Description

LSH x y << left shift x by y bits, in effect multiply x by
2 to the power of y

LT x y < x is less than y

LTE x y <= x is less than or equal to y

LV.CV x get the current CV value for channel x

LV.L.DIR LV.L.DIR x get/set loop direction

LV.L.LEN LV.L.LEN x get/set loop length

LV.L.ST LV.L.ST x get/set loop start

LV.POS LV.POS x get/set current position

LV.PRE LV.PRE x return current preset / load preset x

LV.RES x reset, 0 for soft reset (on next ext. clock),
1 for hard reset

M M x get/set metronome interval to x (in ms),
default 1000, minimum value 25

M! M! x get/set metronome to experimental
interval x (in ms), minimum value 2

M.ACT M.ACT x get/set metronome activation to x (0/1),
default 1 (enabled)

M.RESET hard reset metronome count without
triggering

MA.CLR clear all connections

MA.COL col MA.COL col value get or set column col (as a 16 bit
unsigned value where each bit represents
a connection)

MA.OFF x y disconnect row x and column y in the
current program

MA.ON x y connect row x and column y in the
current program (rows/columns are
0-based)

MA.PCLR pgm clear all connections in program pgm

MA.PCOL pgm col MA.PCOL pgm col
value

get or set column col in program pgm

MA.PGM pgm select the current program (1-based)

MA.POFF x y pgm connect row x and column y in program
pgm

MA.PON pgm x y connect row x and column y in program
pgm

MA.PROW pgm row MA.PROW pgm row
value

get or set row row in program pgm

122

OP OP (set) (aliases) Description

MA.PSET pgm x y
state

set the connection at row x and column y
in program pgm to state (1 - on, 0 - off)

MA.RESET reset program sequencer

MA.ROW row MA.ROW row value get or set row row

MA.SELECT x select the default matrixarchate module,
default 1

MA.SET x y state set the connection at row x and column y
to state (1 - on, 0 - off)

MA.STEP advance program sequencer

MAX x y return the maximum of x and y

ME.CV x get the current CV value for channel x

ME.PERIOD ME.PERIOD x get/set internal clock period

ME.PRE ME.PRE x return current preset / load preset x

ME.RES x reset channel x (0 = all), also used as
“start”

ME.SCALE ME.SCALE x get/set current scale

ME.STOP x stop channel x (0 = all)

MID.SHIFT o shift pitch CV by standard Teletype pitch
value (e.g. N 6, V -1, etc)

MID.SLEW t set pitch slew time in ms (applies to all
allocation styles except FIXED)

MIN x y return the minimum of x and y

MOD x y % find the remainder after division of x by y

MP.PRESET x set Meadowphysics to preset x (indexed
from 0)

MP.RESET x reset countdown for channel x (0 = all,
1-8 = individual channels)

MP.STOP x reset channel x (0 = all, 1-8 = individual
channels)

MUL x y * multiply x and y together

MUTE x MUTE x y Disable trigger input x

N x converts an equal temperament note
number to a value usable by the CV
outputs (x in the range -127 to 127)

NE x y != , XOR x is not equal to y

NZ x x is not 0

O O x auto-increments after each access, can
be set, starting value 0

123

OP OP (set) (aliases) Description

O.INC O.INC x how much to increment O by on each
invocation, default 1

O.MAX O.MAX x the upper bound for O, default 63

O.MIN O.MIN x the lower bound for O, default 0

O.WRAP O.WRAP x should O wrap when it reaches its bounds,
default 1

OR x y || logical OR of x and y

OR.BANK x Select preset bank x (1-8)

OR.CLK x Advance track x (1-4)

OR.CVA x Select tracks for CV A where x is a binary
number representing the tracks

OR.CVB x Select tracks for CV B where x is a binary
number representing the tracks

OR.DIV x Set divisor for selected track to x (1-16)

OR.GRST x Global reset (x can be any value)

OR.MUTE x Mute trigger selected by OR.TRK (0 = on,
1 = mute)

OR.PHASE x Set phase for selected track to x (0-16)

OR.PRESET x Select preset x (1-8)

OR.RELOAD x Reload preset or bank (0 - current preset,
1 - current bank, 2 - all banks)

OR.ROTS x Rotate scales by x (1-15)

OR.ROTW x Rotate weights by x (1-3)

OR.RST x Reset track x (1-4)

OR.SCALE x Select scale x (1-16)

OR.TRK x Choose track x (1-4) to be used by
OR.DIV, OR.PHASE, OR.WGT or OR.MUTE

OR.WGT x Set weight for selected track to x (1-8)

OTHER: ... runs the command when the previous
EVERY/SKIP did not run its command.

P x P x y get/set the value of the working pattern
at index x

P.+ x y increase the value of the working pattern
at index x by y

P.+W x y a b increase the value of the working pattern
at index x by y and wrap it to a..b range

P.- x y decrease the value of the working pattern
at index x by y

124

OP OP (set) (aliases) Description

P.-W x y a b decrease the value of the working pattern
at index x by y and wrap it to a..b range

P.END P.END x get/set the end location of the working
pattern, default 63

P.HERE P.HERE x get/set value at current index of working
pattern

P.I P.I x get/set index position for the working
pattern.

P.INS x y insert value y at index x of working
pattern, shift later values down,
destructive to loop length

P.L P.L x get/set pattern length of the working
pattern, non-destructive to data

P.MAX find the first maximum value in the
pattern between the START and END for
the working pattern and return its index

P.MIN find the first minimum value in the pattern
between the START and END for the
working pattern and return its index

P.N P.N x get/set the pattern number for the
working pattern, default 0

P.NEXT P.NEXT x increment index of working pattern then
get/set value

P.POP return and remove the value from the end
of the working pattern (like a stack),
destructive to loop length

P.PREV P.PREV x decrement index of working pattern then
get/set value

P.PUSH x insert value x to the end of the working
pattern (like a stack), destructive to loop
length

P.RM x delete index x of working pattern, shift
later values up, destructive to loop length

P.RND return a value randomly selected between
the start and the end position

P.SEED P.SEED x P.SD get / set the random number generator
seed for the P.RND and PN.RND ops

P.START P.START x get/set the start location of the working
pattern, default 0

P.WRAP P.WRAP x when the working pattern reaches its
bounds does it wrap (0/1), default 1
(enabled)

125

OP OP (set) (aliases) Description

PARAM PRM Get the value of PARAM knob (0-16383)

PARAM.CAL.MAX Reads the Parameter Knob maximum
position and assigns the maximum point

PARAM.CAL.MIN Reads the Parameter Knob minimum
position and assigns a zero value

PARAM.CAL.RESET Resets the Parameter Knob calibration

PARAM.SCALE min max Set static scaling of the PARAM knob to
between min and max.

PN x y PN x y z get/set the value of pattern x at index y

PN.+ x y z increase the value of pattern x at index y
by z

PN.+W x y z a b increase the value of pattern x at index y
by z and wrap it to a..b range

PN.- x y z decrease the value of pattern x at index y
by z

PN.-W x y z a b decrease the value of pattern x at index y
by z and wrap it to a..b range

PN.END x PN.END x y get/set the end location of the pattern x,
default 63

PN.HERE x PN.HERE x y get/set value at current index of pattern x

PN.I x PN.I x y get/set index position for pattern x

PN.INS x y z insert value z at index y of pattern x, shift
later values down, destructive to loop
length

PN.L x PN.L x y get/set pattern length of pattern x.
non-destructive to data

PN.MAX x find the first maximum value in the
pattern between the START and END for
pattern x and return its index

PN.MIN x find the first minimum value in the pattern
between the START and END for pattern
x and return its index

PN.NEXT x PN.NEXT x y increment index of pattern x then get/set
value

PN.POP x return and remove the value from the end
of pattern x (like a stack), destructive to
loop length

PN.PREV x PN.PREV x y decrement index of pattern x then get/set
value

PN.PUSH x y insert value y to the end of pattern x (like
a stack), destructive to loop length

126

OP OP (set) (aliases) Description

PN.RM x y delete index y of pattern x, shift later
values up, destructive to loop length

PN.RND x return a value randomly selected between
the start and the end position of pattern x

PN.START x PN.START x y get/set the start location of pattern x,
default 0

PN.WRAP x PN.WRAP x y when pattern x reaches its bounds does
it wrap (0/1), default 1 (enabled)

PROB x: ... potentially execute command with
probability x (0-100)

PROB.SEED PROB.SEED x PROB.SD get / set the random number generator
seed for the PROB mod

Q Q x Modify the queue entries

Q.AVG Q.AVG x Return the average of the queue

Q.N Q.N x The queue length

QT x y round x to the closest multiple of y
(quantise)

R generate a random number

R.MAX x set the upper end of the range from 0 –
32767

R.MIN x set the lower end of the range from 0 –
32767

RAND x RND generate a random number between 0
and x inclusive

RAND.SEED RAND.SEED x RAND.SD ,
R.SD

get / set the random number generator
seed for R, RRAND, and RAND ops

RRAND x y RRND generate a random number between x
and y inclusive

RSH x y >> right shift x by y bits, in effect divide x by
2 to the power of y

S: ... Place a command onto the stack

S.ALL Execute all entries in the stack

S.CLR Clear all entries in the stack

S.L Get the length of the stack

S.POP Execute the most recent entry

SC.CV x y CV target value for the ER-301 virtual
output x to value y

SC.CV.OFF x y CV offset added to the ER-301 virtual
output x

127

OP OP (set) (aliases) Description

SC.CV.SET x Set CV value for the ER-301 virtual output
x

SC.CV.SLEW x y Set the CV slew time for the ER-301
virtual output x in ms

SC.TR x y Set trigger output for the ER-301 virtual
output x to y (0-1)

SC.TR.POL x y Set polarity of trigger for the ER-301
virtual output x to y (0-1)

SC.TR.PULSE x SC.TR.P Pulse the ER-301 virtual trigger output x

SC.TR.TIME x y Set the pulse time for the ER-301 virtual
trigger x to y in ms

SC.TR.TOG x Flip the state for the ER-301 virtual trigger
output x

SCALE a b x y i SCL scale i from range a to b to range x to y,
i.e. i * (y - x) / (b - a)

SCENE SCENE x get the current scene number, or load
scene x (0-31)

SCENE.G x load scene x (0-31) without loading grid
control states

SCRIPT SCRIPT x $ get current script number, or execute
script x (1-8), recursion allowed

SCRIPT.POL x SCRIPT.POL x p $.POL get script x trigger polarity, or set polarity
p (1 rising edge, 2 falling, 3 both)

SEED SEED x get / set the random number generator
seed for all SEED ops

SKIP x: ... run the command every time except the
xth time.

STATE x Read the current state of input x

SUB x y - subtract y from x

SYNC x synchronizes all EVERY and SKIP
counters to offset x.

T T x get / set the variable T, typically used for
time, default 0

TI.IN x reads the value of IN jack x; default return
range is from -16384 to 16383 -
representing -10V to +10V; return range
can be altered by the TI.IN.MAP
command

TI.IN.CALIB x y calibrates the scaling for IN jack x; y of
-1 sets the -10V point; y of 0 sets the 0V
point; y of 1 sets the +10V point

128

OP OP (set) (aliases) Description

TI.IN.INIT x initializes IN jack x back to the default
boot settings and behaviors; neutralizes
mapping (but not calibration)

TI.IN.MAP x y z maps the IN values for input jack x across
the range y - z (default range is -16384 to
16383 - representing -10V to +10V)

TI.IN.N x return the quantized note number for IN
jack x using the scale set by
TI.IN.SCALE

TI.IN.QT x return the quantized value for IN jack x
using the scale set by TI.IN.SCALE;
default return range is from -16384 to
16383 - representing -10V to +10V

TI.IN.SCALE x select scale # y for IN jack x; scales
listed in full description

TI.INIT d initializes all of the PARAM and IN inputs
for device number d (1-8)

TI.PARAM x TI.PRM reads the value of PARAM knob x; default
return range is from 0 to 16383; return
range can be altered by the
TI.PARAM.MAP command

TI.PARAM.CALIB x y TI.PRM.CALIBcalibrates the scaling for PARAM knob x;
y of 0 sets the bottom bound; y of 1 sets
the top bound

TI.PARAM.INIT x TI.PRM.INITinitializes PARAM knob x back to the
default boot settings and behaviors;
neutralizes mapping (but not calibration)

TI.PARAM.MAP x y z TI.PRM.MAP maps the PARAM values for input x
across the range y - z (defaults 0-16383)

TI.PARAM.N x TI.PRM.N return the quantized note number for
PARAM knob x using the scale set by
TI.PARAM.SCALE

TI.PARAM.QT x TI.PRM.QT return the quantized value for PARAM
knob x using the scale set by
TI.PARAM.SCALE; default return range
is from 0 to 16383

TI.PARAM.SCALE x TI.PRM.SCALEselect scale # y for PARAM knob x; scales
listed in full description

TI.RESET d resets the calibration data for TXi number
d (1-8) to its factory defaults (no
calibration)

TI.STORE d stores the calibration data for TXi number
d (1-8) to its internal flash memory

129

OP OP (set) (aliases) Description

TIME TIME x timer value, counts up in ms., wraps after
32s, can be set

TIME.ACT TIME.ACT x enable or disable timer counting, default
1

TO.CV x CV target output x; y values are bipolar
(-16384 to +16383) and map to -10 to +10

TO.CV.CALIB x Locks the current offset (CV.OFF) as a
calibration offset and saves it to persist
between power cycles for output x.

TO.CV.INIT x initializes CV output x back to the default
boot settings and behaviors; neutralizes
offsets, slews, envelopes, oscillation, etc.

TO.CV.LOG x y translates the output for CV output x to
logarithmic mode y; y defaults to 0 (off);
mode 1 is for 0-16384 (0V-10V), mode 2
is for 0-8192 (0V-5V), mode 3 is for
0-4096 (0V-2.5V), etc.

TO.CV.N x y target the CV to note y for output x; y is
indexed in the output’s current CV.SCALE

TO.CV.N.SET x y set the CV to note y for output x; y is
indexed in the output’s current CV.SCALE
(ignoring SLEW)

TO.CV.OFF x y set the CV offset for output x; y values
are added at the final stage

TO.CV.QT x y CV target output x; y is quantized to
output’s current CV.SCALE

TO.CV.QT.SET x y set the CV for output x (ignoring SLEW); y
is quantized to output’s current
CV.SCALE

TO.CV.RESET x Clears the calibration offset for output x.

TO.CV.SCALE x y select scale # y for CV output x; scales
listed in full description

TO.CV.SET x y set the CV for output x (ignoring SLEW); y
values are bipolar (-16384 to +16383) and
map to -10 to +10

TO.CV.SLEW x y set the slew amount for output x; y in
milliseconds

TO.CV.SLEW.M x y set the slew amount for output x; y in
minutes

TO.CV.SLEW.S x y set the slew amount for output x; y in
seconds

130

OP OP (set) (aliases) Description

TO.ENV x y This parameter essentially allows output
x to act as a gate between the 0 and 1
state. Changing this value from 0 to 1
causes the envelope to trigger the attack
phase and hold at the peak CV value;
changing this value from 1 to 0 causes
the decay stage of the envelope to be
triggered.

TO.ENV.ACT x y activates/deactivates the AD envelope
generator for the CV output x; y turns the
envelope generator off (0 - default) or on
(1); CV amplitude is used as the peak for
the envelope and needs to be > 0 for the
envelope to be perceivable

TO.ENV.ATT x y set the envelope attack time to y for CV
output x; y in milliseconds (default 12
ms)

TO.ENV.ATT.M x y set the envelope attack time to y for CV
output x; y in minutes

TO.ENV.ATT.S x y set the envelope attack time to y for CV
output x; y in seconds

TO.ENV.DEC x y set the envelope decay time to y for CV
output x; y in milliseconds (default 250
ms)

TO.ENV.DEC.M x y set the envelope decay time to y for CV
output x; y in minutes

TO.ENV.DEC.S x y set the envelope decay time to y for CV
output x; y in seconds

TO.ENV.EOC x n fires a PULSE at the End of Cycle to the
unit-local trigger output ‘n’ for the
envelope on CV output x; n refers to
trigger output 1-4 on the same TXo as CV
output ‘y’

TO.ENV.EOR x n fires a PULSE at the End of Rise to the
unit-local trigger output ‘n’ for the
envelope on CV output x; n refers to
trigger output 1-4 on the same TXo as CV
output ‘y’

131

OP OP (set) (aliases) Description

TO.ENV.LOOP x y causes the envelope on CV output x to
loop for y times; a y of 0 will cause the
envelope to loop infinitely; setting y to 1
(default) disables looping and (if currently
looping) will cause it to finish its current
cycle and cease

TO.ENV.TRIG x triggers the envelope at CV output x to
cycle; CV amplitude is used as the peak
for the envelope and needs to be > 0 for
the envelope to be perceivable

TO.INIT d initializes all of the TR and CV outputs for
device number d (1-8)

TO.KILL d cancels all TR pulses and CV slews for
device number d (1-8)

TO.M d y sets the 4 independent metronome
intervals for device d (1-8) to y in
milliseconds; default 1000

TO.M.ACT d y sets the active status for the 4
independent metronomes on device d
(1-8) to y (0/1); default 0 (disabled)

TO.M.BPM d y sets the 4 independent metronome
intervals for device d to y in Beats Per
Minute

TO.M.COUNT d y sets the number of repeats before
deactivating for the 4 metronomes on
device d to y; default 0 (infinity)

TO.M.M d y sets the 4 independent metronome
intervals for device d to y in minutes

TO.M.S d y sets the 4 independent metronome
intervals for device d to y in seconds;
default 1

TO.M.SYNC d synchronizes the 4 metronomes for
device number d (1-8)

TO.OSC x y targets oscillation for CV output x to y
with the portamento rate determined by
the TO.OSC.SLEW value; y is 1v/oct
translated from the standard range
(1-16384); a value of 0 disables
oscillation; CV amplitude is used as the
peak for oscillation and needs to be > 0
for it to be perceivable

132

OP OP (set) (aliases) Description

TO.OSC.CTR x y centers the oscillation on CV output x to
y; y values are bipolar (-16384 to +16383)
and map to -10 to +10

TO.OSC.CYC x y targets the oscillator cycle length to y for
CV output x with the portamento rate
determined by the TO.OSC.SLEW value;
y is in milliseconds

TO.OSC.CYC.M x y targets the oscillator cycle length to y for
CV output x with the portamento rate
determined by the TO.OSC.SLEW value;
y is in minutes

TO.OSC.CYC.M.SET x y sets the oscillator cycle length to y for CV
output x (ignores CV.OSC.SLEW); y is in
minutes

TO.OSC.CYC.S x y targets the oscillator cycle length to y for
CV output x with the portamento rate
determined by the TO.OSC.SLEW value;
y is in seconds

TO.OSC.CYC.S.SET x y sets the oscillator cycle length to y for CV
output x (ignores CV.OSC.SLEW); y is in
seconds

TO.OSC.CYC.SET x y sets the oscillator cycle length to y for CV
output x (ignores CV.OSC.SLEW); y is in
milliseconds

TO.OSC.FQ x y targets oscillation for CV output x to
frequency y with the portamento rate
determined by the TO.OSC.SLEW value;
y is in Hz; a value of 0 disables
oscillation; CV amplitude is used as the
peak for oscillation and needs to be > 0
for it to be perceivable

TO.OSC.FQ.SET x y sets oscillation for CV output x to
frequency y (ignores CV.OSC.SLEW); y is
in Hz; a value of 0 disables oscillation; CV
amplitude is used as the peak for
oscillation and needs to be > 0 for it to
be perceivable

TO.OSC.LFO x y targets oscillation for CV output x to LFO
frequency y with the portamento rate
determined by the TO.OSC.SLEW value;
y is in mHz (millihertz: 10^-3 Hz); a value
of 0 disables oscillation; CV amplitude is
used as the peak for oscillation and
needs to be > 0 for it to be perceivable

133

OP OP (set) (aliases) Description

TO.OSC.LFO.SET x y sets oscillation for CV output x to LFO
frequency y (ignores CV.OSC.SLEW); y is
in mHz (millihertz: 10^-3 Hz); a value of 0
disables oscillation; CV amplitude is used
as the peak for oscillation and needs to
be > 0 for it to be perceivable

TO.OSC.N x y targets oscillation for CV output x to note
y with the portamento rate determined by
the TO.OSC.SLEW value; see
quantization scale reference for y; CV
amplitude is used as the peak for
oscillation and needs to be > 0 for it to
be perceivable

TO.OSC.N.SET x y sets oscillation for CV output x to note y
(ignores CV.OSC.SLEW); see
quantization scale reference for y; CV
amplitude is used as the peak for
oscillation and needs to be > 0 for it to
be perceivable

TO.OSC.PHASE x y sets the phase offset of the oscillator on
CV output x to y (0 to 16383); y is the
range of one cycle

TO.OSC.QT x y targets oscillation for CV output x to y
with the portamento rate determined by
the TO.OSC.SLEW value; y is 1v/oct
translated from the standard range
(1-16384) and quantized to current
OSC.SCALE; a value of 0 disables
oscillation; CV amplitude is used as the
peak for oscillation and needs to be > 0
for it to be perceivable

TO.OSC.QT.SET x y set oscillation for CV output x to y
(ignores CV.OSC.SLEW); y is 1v/oct
translated from the standard range
(1-16384) and quantized to current
OSC.SCALE; a value of 0 disables
oscillation; CV amplitude is used as the
peak for oscillation and needs to be > 0
for it to be perceivable

134

OP OP (set) (aliases) Description

TO.OSC.RECT x y rectifies the polarity of the oscillator for
output x to y; range for y is -2 to 2;
default is 0 (no rectification); 1 & -1 are
partial rectification - omitting all values
on the other side of the sign; 2 & -2 are
full rectification - inverting values from
the other pole

TO.OSC.SCALE x y select scale # y for CV output x; scales
listed in full description

TO.OSC.SET x y set oscillation for CV output x to y
(ignores CV.OSC.SLEW); y is 1v/oct
translated from the standard range
(1-16384); a value of 0 disables
oscillation; CV amplitude is used as the
peak for oscillation and needs to be > 0
for it to be perceivable

TO.OSC.SLEW x y sets the frequency slew time
(portamento) for the oscillator on CV
output x to y; y in milliseconds

TO.OSC.SLEW.M x y sets the frequency slew time
(portamento) for the oscillator on CV
output x to y; y in minutes

TO.OSC.SLEW.S x y sets the frequency slew time
(portamento) for the oscillator on CV
output x to y; y in seconds

TO.OSC.SYNC x resets the phase of the oscillator on CV
output x (relative to TO.OSC.PHASE)

TO.OSC.WAVE x y set the waveform for output x to y; y
values range 0-4500. There are 45
different waveforms, values translate to
sine (0), triangle (100), saw (200), pulse
(300) all the way to random/noise (4500);
oscillator shape between values is a
blend of the pure waveforms

TO.OSC.WIDTH x y sets the width of the pulse wave on
output x to y; y is a percentage of total
width (0 to 100); only affects waveform
3000

TO.TR x y sets the TR value for output x to y (0/1)

TO.TR.INIT x initializes TR output x back to the default
boot settings and behaviors; neutralizes
metronomes, dividers, pulse counters,
etc.

135

OP OP (set) (aliases) Description

TO.TR.M x y sets the independent metronome interval
for output x to y in milliseconds; default
1000

TO.TR.M.ACT x y sets the active status for the independent
metronome for output x to y (0/1);
default 0 (disabled)

TO.TR.M.BPM x y sets the independent metronome interval
for output x to y in Beats Per Minute

TO.TR.M.COUNT x y sets the number of repeats before
deactivating for output x to y; default 0
(infinity)

TO.TR.M.M x y sets the independent metronome interval
for output x to y in minutes

TO.TR.M.MUL x y multiplies the M rate on TR output x by y;
y defaults to 1 - no multiplication

TO.TR.M.S x y sets the independent metronome interval
for output x to y in seconds; default 1

TO.TR.M.SYNC x synchronizes the PULSE for metronome
on TR output number x

TO.TR.POL x y sets the polarity for TR output n

TO.TR.PULSE x TO.TR.P pulses the TR value for output x for the
duration set by TO.TR.TIME/S/M

TO.TR.PULSE.DIV x y TO.TR.P.DIVsets the clock division factor for TR
output x to y

TO.TR.PULSE.MUTE x y TO.TR.P.MUTEmutes or un-mutes TR output x; y is 1
(mute) or 0 (un-mute)

TO.TR.TIME x y sets the time for TR.PULSE on output n;
y in milliseconds

TO.TR.TIME.M x y sets the time for TR.PULSE on output n;
y in minutes

TO.TR.TIME.S x y sets the time for TR.PULSE on output n;
y in seconds

TO.TR.TOG x toggles the TR value for output x

TO.TR.WIDTH x y sets the time for TR.PULSE on output n
based on the width of its current
metronomic value; y in percentage
(0-100)

TOSS randomly return 0 or 1

TOSS.SEED TOSS.SEED x TOSS.SD get / set the random number generator
seed for the TOSS op

TR x TR x y Set trigger output x to y (0-1)

136

OP OP (set) (aliases) Description

TR.POL x TR.POL x y Set polarity of trigger output x to y (0-1)

TR.PULSE x TR.P Pulse trigger output x

TR.TIME x TR.TIME x y Set the pulse time of trigger x to y ms

TR.TOG x Flip the state of trigger output x

V x converts a voltage to a value usable by
the CV outputs (x between 0 and 10)

VV x converts a voltage to a value usable by
the CV outputs (x between 0 and 1000,
100 represents 1V)

W x: ... run the command while condition x is true

WRAP x y z WRP limit the value x to the range y to z
inclusive, but with wrapping

WS.CUE x Go to a cuepoint relative to the playhead
position. 0 retriggers the current location.
1 jumps to the next cue forward. -1
jumps to the previous cue in the reverse.
These actions are relative to playback
direction such that 0 always retriggers
the most recently passed location

WS.LOOP x Set the loop state on/off. 0 is off. Any
other value turns loop on

WS.PLAY x Set playback state and direction. 0 stops
playback. 1 sets forward motion, while
-1 plays in reverse

WS.REC x Set recording mode. 0 is playback only. 1
sets overdub mode for additive recording.
-1 sets overwrite mode to replace the
tape with your input

WW.END x Set the loop end position (0-15)

WW.MUTE1 x Mute trigger 1 (0 = on, 1 = mute)

WW.MUTE2 x Mute trigger 2 (0 = on, 1 = mute)

WW.MUTE3 x Mute trigger 3 (0 = on, 1 = mute)

WW.MUTE4 x Mute trigger 4 (0 = on, 1 = mute)

WW.MUTEA x Mute CV A (0 = on, 1 = mute)

WW.MUTEB x Mute CV B (0 = on, 1 = mute)

WW.PATTERN x Change pattern (0-15)

WW.PMODE x Set the loop play mode (0-5)

WW.POS x Cut to position (0-15)

WW.PRESET x Recall preset (0-7)

137

OP OP (set) (aliases) Description

WW.QPATTERN x Change pattern (0-15) after current
pattern ends

WW.START x Set the loop start position (0-15)

WW.SYNC x Cut to position (0-15) and hard-sync the
clock (if clocked internally)

X X x get / set the variable X, default 0

Y Y x get / set the variable Y, default 0

Z Z x get / set the variable Z, default 0

^ x y bitwise xor x ^ y

| x y bitwise or x

~ x bitwise not, i.e.: inversion of x

138

B. Missing documentation

G.XYP, G.XYP.X, G.XYP.Y

139

C. Changelog

v3.1.0

• NEW: new op: DEVICE.FLIP
• FIX: some keyboards losing keystrokes1

• NEW: new op: DEL.X
• NEW: new op: DEL.R
• IMP: DELAY_SIZE increased to 16 from 8
• NEW: new variables: J & K local script variables
• FIX: metro rate not updated after INIT.SCENE2

• NEW: new ops: SEED, R.SEED, TOSS.SEED, DRUNK.SEED, P.SEED, PROB.SEED
• NEW: new op: SCENE.G
• NEW: new op: SCRIPT.POL, alias $.POL
• NEW: new ansible remote ops: ANS.G, ANS.G.P, ANS.G.LED, ANS.A, ANS.A.LED
• NEW: new kria remote ops: KR.CUE, KR.PG

v3.0.0

• NEW: grid integration / grid visualizer / grid control mode
• NEW: multiline copy/paste and editing
• NEW: new keybindings to move by words
• NEW: undo in script editing
• NEW: i2c support for ER-301
• NEW: i2c support for 16n Faderbank
• NEW: i2c support for Matrixarchate
• NEW: i2c support for W/
• NEW: new op: ?
• NEW: new ops: P.MIN, PN.MIN, P.MAX, PN.MAX, P.RND, PN.RND, P.+, PN.+, P.-, PN.-. P.+W, PN.+W, P.-W,

PN.-W
• NEW: new Telex ops: TO.CV.CALIB, TO.ENV
• NEW: new Kria ops: KR.CV, KR.MUTE, KR.TMUTE, KR.CLK, ME.CV
• NEW: new aliases: $, RND, RRND, WRP, SCL
• NEW: telex, ansible, just friends, w/ added to the help screen
• FIX: i2c initialization delayed to account for ER-301 bootup
• FIX: last screen saved to flash

1https://github.com/monome/teletype/issues/156
2https://github.com/monome/teletype/issues/174

140

https://github.com/monome/teletype/issues/156
https://github.com/monome/teletype/issues/174

• FIX: knob jitter when loading/saving scenes reduced
• FIX: duplicate commands not added to history3

• FIX: SCALE precision improved
• FIX: PARAM set properly when used in the init script
• FIX: PARAM and IN won’t reset to 0 after INIT.DATA
• FIX: PN.HERE, P.POP, PN.POP will update the tracker screen4

• FIX: P.RM was 1-based, now 0-based5

• FIX: P.RM / PN.RM will not change pattern length if deleting outside of length range6

• FIX: JI op fixed7

• FIX: TIME and LAST are now 1ms accurate8

• FIX: RAND / RRAND will properly work with large range values9

• FIX: L .. 32767 won’t freeze10

• FIX: I now accessible to child SCRIPTS

v2.2

• NEW: added a cheat sheet PDF
• NEW: new bitwise ops: &, |, ^, ~, BSET, BCLR, BGET
• NEW: new ops PARAM.SCALE min max and IN.SCALE min max to add static scaling to inputs
• NEW: blanking screensaver after 90 minutes of keyboard inactivity, any key to wake
• NEW: new op: CHAOS chaotic sequence generator. Control with CHAOS.ALG and CHAOS.R
• NEW: new op family: INIT, to clear device state
• NEW: new ops: R, R.MIN, R.MAX programmable RNG
• IMP: profiling code (optional, dev feature)
• IMP: screen now redraws only lines that have changed
• FIX: multiply now saturates at limits, previous behaviour returned 0 at overflow
• FIX: entered values now saturate at int16 limits
• FIX: reduced flash memory consumption by not storing TEMP script
• FIX: I now carries across DEL commands
• FIX: removed TEMP script allocation in flash
• FIX: corrected functionality of JI op for 1volt/octave tuning and removed octave-wrapping behaviour

(now returns exactly the entered ratio)
• FIX: reduced latency of IN op

3https://github.com/monome/teletype/issues/99
4https://github.com/monome/teletype/issues/151
5https://github.com/monome/teletype/issues/149
6https://github.com/monome/teletype/issues/150
7https://llllllll.co/t/teletype-the-ji-op/10553
8https://github.com/monome/teletype/issues/144
9https://github.com/monome/teletype/issues/143

10https://github.com/monome/teletype/issues/148

141

https://github.com/monome/teletype/issues/99
https://github.com/monome/teletype/issues/151
https://github.com/monome/teletype/issues/149
https://github.com/monome/teletype/issues/150
https://llllllll.co/t/teletype-the-ji-op/10553
https://github.com/monome/teletype/issues/144
https://github.com/monome/teletype/issues/143
https://github.com/monome/teletype/issues/148

v2.1

• BREAKING: the I variable is now scoped to the L loop, and does not exist outside of an execution
context. Scripts using I as a general-purpose variable will be broken.

• FIX: SCENE will not run from INIT script during scene load.
• NEW: Tracker data entry overhaul. Type numbers, press enter to commit.
• NEW: new op: BPM to get milliseconds per beat in given BPM
• NEW: script lines can be disabled / enabled with ctrl-/
• NEW: shift-enter in scene write mode now inserts a line
• NEW: new ops: LAST x for the last time script x was called
• NEW: SCRIPT with no arguments gets the current script number.
• FIX: AVG and Q.AVG now round up properly
• NEW: new op: BREAK to stop the remainder of the script
• NEW: new mod: W [condition]: [statement] will execute statement as long as condition

is true (up to an iteration limit).
• NEW: new mods: EVERY x:, SKIP x:, OTHER: to alternately execute or not execute a command.
• NEW: new op: SYNC x will synchronize all EVERY and SKIP line to the same step.
• NEW: new feature: @ - the turtle. Walks around the pattern grid. Many ops, see documentation.
• OLD: ctrl-F1 to F8 mute/unmute scripts.
• NEW: ctrl-F9 enables/disables METRO.
• FIX: recursive delay fix. Now you can 1: DEL 500: SCRIPT 1 for temporal recursion.
• FIX: KILL now clears TR output as well as disabling the METRO script.
• FIX: if / else conditions no longer transcend their script
• IMP: functional exectuion stack for SCRIPT operations

v2.0.1

• FIX: update IRQ masking which prevents screen glitches and crashing under heavy load

v2.0

• BREAKING: remove II op. Ops that required it will now work with out it. (e.g. II MP.PRESET 1 will
become just MP.PRESET 1)

• BREAKING: merge the MUTE and UNMUTE ops. Now MUTE x will return the mute status for trigger x
(0 is unmuted, 1 is muted), and MUTE x y will set the mute for trigger x (y = 0 to unmute, y = 1 to
mute)

• BREAKING: remove unused Meadowphysics ops: MP.SYNC, MP.MUTE, MP.UNMUTE, MP.FREEZE,
MP.UNFREEZE

• BREAKING: rename Ansible Meadowphysics ops to start with ME
• NEW: sub commands, use a ; separator to run multiple commands on a single line, e.g. X 1; Y 2
• NEW: key bindings rewritten

142

• NEW: aliases: + for ADD, - for SUB, * for MUL, / for DIV, % for MOD, << for LSH, >> for RSH, == for EQ, !=
for NE, < for LT, > for GT, <= for LTE, >= for GTE, ! for EZ, && for AND, || for OR, PRM for PARAM, TR.P
for TR.PULSE

• NEW: new ops: LTE (less than or equal), and GTE (greater than or equal)
• NEW: new pattern ops: PN.L, PN.WRAP, PN.START, PN.END, PN.I, PN.HERE, PN.NEXT, PN.PREV,
PN.INS, PN.RM, PN.PUSH and PN.POP

• NEW: USB disk loading and saving works at any time
• NEW: M limited to setting the metronome speed to 25ms, added M! to allow setting the metronome at

unsupported speeds as low as 2ms
• NEW: TELEX Aliases: TO.TR.P forTO.TR.PULSE (plus all sub-commands) andTI.PRM forTI.PARAM

(plus all sub-commands)
• NEW: TELEX initialization commands: TO.TR.INIT n, TO.CV.INIT n, TO.INIT x, TI.PARAM.INIT
n, TI.IN.INIT n, and TI.INIT x

• IMP: new Ragel parser backend
• IMP: script recursion enhanced, maximum recursion depth is 8, and self recursion is allowed
• IMP: removed the need to prefix : and ; with a space, e.g. IF X : TR.PULSE 1 becomes IF X:
TR.PULSE

• IMP: AND and OR now work as boolean logic, rather than bitwise, XOR is an alias for NE
• FIX: divide by zero errors now explicitly return a 0 (e.g. DIV 5 0 now returns 0 instead of -1), previously

the behaviour was undefined and would crash the simulator
• FIX: numerous crashing bugs with text entry
• FIX: i2c bus crashes under high M times with external triggers
• FIX: P.I and PN.I no longer set values longer than allowed
• FIX: VV works correctly with negative values

v1.4.1

• NEW: added Ansible remote commands LV.CV and CY.CV
• NEW: Added TELEX Modules Support for the TXi and the TXo
• NEW: 75 New Operators Across the Two Modules
• NEW: Supports all basic Teletype functions (add TI and TO to the commands you already know)
• NEW: Extended functionality allows for additional capabilities for existing functions
• NEW: Experimental input operators add capabilities such as input range mapping and quantization
• NEW: Experimental output operators add oscillators, envelopes, independent metronomes, pulse divid-

ing, etc.
• NEW: Full List of Methods Found and Maintained Here11

11https://github.com/bpcmusic/telex/blob/master/commands.md

143

https://github.com/bpcmusic/telex/blob/master/commands.md

v1.2.1

• NEW: Just Friends ops: JF.GOD, JF.MODE, JF.NOTE, JF.RMODE, JF.RUN, JF.SHIFT, JF.TICK,
JF.TR, JF.TUNE, JF.VOX, JF.VTR

v1.2

• NEW: Ansible support added to ops: CV, CV.OFF, CV.SET, CV.SLEW, STATE, TR, TR.POL, TR.PULSE,
TR.TIME, TR.TOG

• NEW: P.RM will also return the value removed
• NEW: ER op
• IMP: a TR.TIME of 0 will disable the pulse
• IMP: O.DIR renamed to O.INC, it’s the value by which O is incremented when it is accessed
• IMP: IF, ELIF, ELSE status is reset on each script run
• IMP: key repeat now works for all keypresses
• FIX: FLIP won’t interfere with the value of O
• FIX: the O op now returns it’s set value before updating itself
• FIX: the DRUNK op now returns it’s set value before updating itself
• FIX: P.START and P.END were set to 1 when set with too large values, now are set to 63
• FIX: CV.SLEW is correctly initialised to 1 for all outputs
• FIX: several bugs where pattern length wasn’t updated in track mode
• FIX: fixed [and] not updating values in track mode

v1.1

• NEW: USB flash drive read/write
• NEW: SCRIPT op for scripted execution of other scripts!
• NEW: MUTE and UNMUTE ops for disabling trigger input
• NEW: hotkeys for MUTE toggle per input (meta-shift-number)
• NEW: screen indication in live mode for MUTE status
• NEW: SCALE op for scaling number from one range to another
• NEW: JI op just intonation helper
• NEW: STATE op to read current state of input triggers 1-8 (low/high = 0/1)
• NEW: keypad executes scripts (works for standalone USB keypads and full-sized keyboards)
• NEW: KILL op clears delays, stack, CV slews, pulses
• NEW: hotkey meta+ESC executes KILL
• NEW: ABS op absolute value, single argument
• NEW: FLIP op variable which changes state (0/1) on each read
• NEW: logic ops: AND, OR, XOR
• NEW: O ops: O.MIN, O.MAX, O.WRAP, O.DIR for counter range control
• NEW: DRUNK ops: DRUNK.MIN, DRUNK.MAX, DRUNK.WRAP for range control

144

• NEW: TR.POL specifies the polarity of TR.PULSE
• NEW: if powered down in tracker mode, will power up in tracker mode
• IMP: TR.PULSE retrigger behaviour now predictable
• IMP: mode switch keys more consistent (not constantly resetting to live mode)
• FIX: bug in command history in live mode
• FIX: EXP op now exists
• FIX: P and PN parse error
• FIX: possible crash on excess length line entry
• FIX: CV wrapping with negative CV.OFF values
• FIX: INIT script executed now on keyboardless scene recall
• FIX: Q.AVG overflow no more
• FIX: P.PUSH will fully fill a pattern
• FIX: CV.SET followed by slewed CV in one command works
• FIX: DEL 0 no longer voids command

v1.0

• Initial release

145

	Introduction
	Updates
	Version 3.1
	Version 3.0
	Version 2.2
	Version 2.1
	Version 2.0

	Quickstart
	Panel
	LIVE mode
	EDIT mode
	Patterns
	Scenes
	USB Backup
	Commands
	Continuing

	Keys
	Global key bindings
	Text editing
	Live mode
	Edit mode
	Tracker mode
	Preset read mode
	Preset write mode
	Help mode

	OPs and MODs
	Variables
	Hardware
	Patterns
	Control flow
	Maths
	Metronome
	Delay
	Stack
	Queue
	Seed
	Turtle
	Grid
	Ansible
	White Whale
	Meadowphysics
	Earthsea
	Orca
	Just Friends
	TELEXi
	TELEXo
	ER-301
	16n
	W/
	Matrixarchate

	Advanced
	Teletype terminology
	Sub commands
	Aliases
	Avoiding non-determinism
	Grid integration

	Alphabetical list of OPs and MODs
	Missing documentation
	Changelog
	v3.1.0
	v3.0.0
	v2.2
	v2.1
	v2.0.1
	v2.0
	v1.4.1
	v1.2.1
	v1.2
	v1.1
	v1.0

